INSTRUCTION BOOKLET

DIRECTION FINDER SET AN/SRD-22

MADE FOR
DEPARTMENT OF TRANSPORTATION
UNITED STATES COAST GUARD
CONTRACTOR
INTECH INC. 33967
SANTA CLARA, CA 95050

Section Title Page
I THEORY OF OPERATION 1-1

1. 1 Introduction 1-1
2. 2 General Description 1-1
1.2.1 Antenna Unit 1-5
1.2.2 Receiver Unit 1-5
1.2.3 Specifications 1-5
1.3 Operating Principles 1-5
1.3.1 Antenna Phasing 1-7
1.3.2 RF Amplification and Demodulation 1-8
1.3.3 Analog Processing 1-8
1.3.4 Bearing Decoding and Display 1-8
1.3.5 Audio Amplification and Squelch 1-9
1.4 Functional Description 1-9
1.4.1 Antenna Phasing 1-9
1.4.2 Receiver Switching 1-10
1.4.3 RF Amplification and Demodulation 1-10
1.4.4 Analog Processing 1-11
1.4.5 Bearing Decoding and Display 1-12
1.4.6 Audio Amplification 1-13
1.4.7 Power Supply IA2 1-14
1.5 Circuit Details 1-14
1.5.1 Antenna Unit 1-14
1.5.1.1 Receiver - General 1-14
1.5.1.2 Antenna Driver Board 2A2 1-15
Section Title Page
1.5.1.3 Antenna RF Phasing Board 2Al 1-16
1.5.2 Receiver Unit 1-17
1.5.2.1 Power Supply 1A2 1-17
1.5.2.2 FM Receiver 1A3(156-163 MHz) 1-17
1.5.2.3 AM Receiver $1 \mathrm{~A} 4(121.5 \mathrm{MHz}$) 1-21
1.5.2.4 Audio Assembly 1A5 1-24
1.5.2.5 Oscillator/Multiplier Board LA6 1-25
1.5.2.6 Analog Board 1A7 1-27
1.5.2.7 Digital Board IA8 1-29
Section Title Page
II INSTALLATION 2-1
3. 2 Site Preparation 2-1
2.2.1 Environmental Limitations 2-1
2.2.2 Power Requirements 2-1
2.2.3 Mounting Requirements 2-2
2.3 Unpacking and Inspection 2-2
2.4 Installation Requirements 2-2
2.4.1 Tools Required 2-2
2.4.2 Test Equipment Required 2-4
2.4.3 Power Sóurce : 2-4
2.5 Installation Instructions 2-4
2.5.1 Preliminary Procedure 2-5
2.5.2 Antenna Installation 2-5
2.5.3 Receiver Installation 2-9
2.5.3.1 Power Cable 2-9
2.5.3.2 Antenna Cable 2-10
4. 6 Installation Test and Adjustment 2-10
Section Title Page
III OPERATION 3-1
3.1 Introduction 3-1
3.2 Controls, Indicators, and Connectors 3-1
3.3 Operating Procedures 3-1
3.3.1 Turn-on Procedures 3-1
3.3.2 Operating Procedures 3-5
3.3.2.1 DF Mode Operation 3-5
3.3.2.2 MON Mode Operation 3-5
3.4 Operating Checks 3-5
3.4.1 Operator's Test - In Port 3-5
3.4.2 Operator's Test - At Sea 3-6
Section Title Page
IV MAINTENANCE 4-1
4.1 Introduction 4-1
4.2 Recommended Test Equipment 4-1
4.3 Preventive Maintenance 4-1
4.4 Performance Tests 4-3
4.4.1 Power Supply Test 4-3
4.4.2 Frequency Test 4-3
4.4.3 Sensitivity (12 dB SINAD) Test 4-5
4.4.4 Audio Power Output Test 4-6
4.4.5 Squelch Threshold Sensitivity 'rest 4-7
4.4.6 AGC Threshold Test 4-7
4.4.7 Antenna Drive Level Test 4-8
4.4.8 Receiver DF Accuracy Test 4-9
4.4.9 System DF Accuracy Test 4-9
4.5 Adjustments 4-11
4.5.1 Receiver Frequency Adjustment 4-11
4.5.2 AGC Threshold Adjustment 4-14
4.5.3 Antenna Drive Level Adjustment 4-1 A
4.5.4 System DF Accuracy Adjustment 4-15
4.5 .5 Other Adjustment 4-15
4.6 Troubleshooting 4-15
4.6 .1 Initial Troubleshooting Procedure 4-16
4.6.2 DC Voltage and Waveforms 4-16
Section Title Page
V. PARTS LIST 5-1
5.1 Introduction 5-1
VI PHOTOGRAPHS AND MECHANICAL DRAWINGS 6-1
VII CIRCUIT DIAGRAMS 7-1
7.1 Diagrams 7-1
7.1.1 Cable Assembly Diagrams 7-1
7.1.2 Wiring Diagrams 7-1
7.1.3 Parts Location Diagrams 7-1
7.1.4 Integrated Circuit Diagrams 7-1
7.1.5 Schematic Diagrams 7-1
Figure Title
1-1 Direction Finder Simplified Block Diagram 1-2
1-2 Direction Finder Function Block Diagram (sheet lof 2) $1-3 / 1-4$
1-2 Direction Finder Function Block Diagram (sheet 2 of 2) 1-5/1-6
1-3 First IF Amplifier/Second. Mixer Simplified Schem- atic Diagram 1-21
1-4 FM Limiter Amplifier and FM Quadrature Detector Simplified Schematic Diagram 1-22
1-5 AM Synchronous Detector Simplified Schematic Diagram 1-24
1-6 AGC System Simplified Schematic Diagram 1-25
2-1 Receiver Mounting Positions 2-3
2-2 Antenna Installation Drawing (sheet 1 of 2) 2-6
2-2 Antenna Installation Drawing (sheet 2 of 2) 2-7
3-1 Receiver/Display Unit, Controls, Indicators, and Connectors 3-2
4-1 Frequency Test Setup 4-4
4-2 Sensitivity Check Test Setup 4-5
4-3 AGC Threshold Test Setup 4-7
4-4 Antenna Drive Level Test Setup 4-8
4-5 Receiver DF Accuracy Test Setup 4-10
4-6 Receiver Adjustment Controls 4-12
4-7 Receiver Test Points 4-13
4-8 Receiver Test Point Waveforms 4-18
4-9 Direction Finder Troubleshooting Flowchart (sheet I of 5) $4-31 / 4-32$
4-9. Direction Finder Troubleshooting Flowchart (sheet 2 of 5) 4-33/4-34
4-9 Direction Finder Troubleshooting Flowchart (sheet 3 of 5) 4-35/4-36
4-9 Direction Finder Troubleshooting Flowchart (sheet 4 of 5) 4-37/4-38

LIST OF ILLUSTRATIONS

Figure	Title	Page
4-9	Direction Finder Troubleshooting Flowchart (sheet 5 of 5)	4-39/4-40
7-1	Direction Finder Cable Assembly Drawing	7-3/7-4
7-2	Receiver Unit Wiring Diagram	7-5/7-6
7-3	Power Supply 1A2 Component Location Diagram	7-7/7-8
7-4	FM Receiver IA3 ($156-163 \mathrm{MHz}$) Component Location Diagram	7-9/7-10
7-5	AM Receiver 1A4 (121.5 MHz) Component Location Diagram	7-11/12
7-6	Audio 1A5 Component Location Diagram	7-13/7-14
7-7	Oscillation/Multiplier 1A6 Component Location Diagram	7-15/7-16
7-8	Analog 1A7 Component Location Diagram	7-17/7-18
7-9	Digital la8 Component Location Diagram	7-19/7-20
7-10	Antenna RF Phasing 2Al Component Location Diagram	7-21/7-22
7-11	Antenna Driver 2A2 Component Location Diagram	7-23/7-24
7-12	Integrated Circuit Elements	7-25/7-26
7-13	Power Supply 1A2 Schematic Diagram	7-27/7-28
7-14	FM Receiver 1A3(156-163 MHz) Schematic Diagram	7-29/7-30
7-15	AM Receiver 1 A 4 (121.5 MHz) Schematic Diagram	7-31/7-32
7-16	Audio IA5 Schematic Diagram	7-33/7-34
7-17	Oscillator/Multiplier 1A6 Schematic Diagram	7-35/7-36
7-18	Analog la7 Schematic Diagram	7-37/7-38
7-19	Digital 1A8 Schematic Diagram	7-39/7-40
7-20	Antenna RF Phasing 2Al Schematic Diagram	7-41/7-42
7-21	Antenna Driver 2A2 Schematic Diagram	7-43/7-44

LIST OF TABLES

Table Title Page
1-1 Direction Finder Specifications 1-8
2-1 Direction Finder Environmental Limitations 2-1
2-2 Tools and Test Equipment Required for Installation 2-4
2-3 Power Cable Pin Assignment 2-9
3-1 Controls, Indicators, and Connectors 3-3
4-1 Recommended Test Equipment 4-2
4-2 Preventive Maintenance Schedule 4-2
4-3 Initial Symptom-Cause Checks 4-16
4-4 Receiver DC Test Point Voltages 4-17
5-1 Receiver Unit 1 Parts List 5-2
5-2 Antenna Unit 2 Parts List 5-27
5-3 Code List of Manufacturers 5-32

SECTION I - THEORY OF OPERATION

1.1 INTRODUCTION

This section is divided into four major parts: (a) a general description of the AN/SRD-22, Automatic Direction Finder Set (hereinafter referred to as the direction finder), (b) a brief description of direction finder operating principles, (c) a functional description of direction finder operation which is keyed to an overall block diagram, and (d) detailed descriptions of direction finder circuits. A simplified block diagram (figure 1-1) illustrates basic operating principles. The functional block diagram (figure 1-2) illustrates direction finder circuit functions and relates operation to direction finder subassemblies.

1. 2 GENERAL DESCRIPTION

The direction finder provides a rapid determination of the relative bearing of a VHF source with respect to ship's bearing. The relative bearing is indicated on a 3-digit LED display with a resolution of one degree and an accuracy of ± 3 degrees. The Doppler sensing technique used by the direction finder eliminates both directional ambiguities and receiver desensitizing during direction finding operation.

The direction finder receives FM frequencies in the $156-163 \mathrm{MHz}$ frequency range and also receives the (AM) Emergency Position Indicating Radio Beacon (EPIRB) at 121.5 MHz . The direction finder can operate on any 8 of the 58 internationally assigned VHF/FM ship-to-ship and ship-to-shore communication channels, including channel 16 which is reserved for emergency use. The direction finder accommodates nine channel frequency crystals at any time. Channel assignments may be changed by replacing the crystals. One of the channels is dedicated to AM reception and eight are dedicated to FM reception.

2CD $=$ ZERO CROSSING DETECTOR
BP $=\quad$ BAND PASS

The direction finder comprises two units; a receiver unit that contains seven circuit board assemblies, and a four-element antenna array unit that contains antenna phasing electronics. The antenna and receiver are interconnected by a single RG58C/U coax cable.
1.2.1. Antenna Unit - The antenna is a four-element vertical array with a gain of 3 dB . The vertical array is used with a horizontal ground plane array to improve reception and minimize the effect of reflections from the ship's structure. Two circuit boards containing antenna phasing circuits are mounted in the antenna base. The phasing circuits utilize a receiver-generated 4.019 kHz frequency to induce Doppler-like phase modulation in the received rf signal; thereby simulating antenna rotation.
1.2.2 Receiver Unit.- The receiver unit provides the 4.019 kHz reference drive signal to the antenna unit and receives the resulting phase-modulated rf signal from the antenna unit. Phase information and audio are extracted from the rf signal to provide a 3-digit display of relative bearing and an audio output, respectively. Volume, squelch, dimmer, and acquisition rate controls are provided on the front panel of the unit. The receiver electronic circuits are located on seven plug-in circuit boards to facilitate maintenance.
1.2.3 Specifications. - Direction Finder specifications are listed in table 1-1.

1.3 OPERATING PRINCIPLES

The direction finder, figure 1-1, uses a Doppler sensing technique to determine the relative bearing of a radio transmission source. Antenna rotation is simulated by inducing Dopplerlike phase modulation into the received rf signal. The direction finder then amplifies and demodulates the signal to recover the Doppler-like signal component. The phase of the Doppler component is compared to a stable reference to determine relative bearing.

Table 1-1. Direction Finder Specifications

ITEM	PARAMETER
General	
Frequency Range:	121.500 MHz AM 156 to 163 MHz FM
Channel Capacity:	9 crystal controlled channels
	$8 \mathrm{FM} \quad 1 \mathrm{AM}$
Bearing Accuracy:	$\pm 3^{\circ}$
Receiver Dimensions:	$4-1 / 4{ }^{\prime \prime} \mathrm{H} \times 12^{\prime \prime} \mathrm{W} \times 15-1 / 2^{\prime \prime} \mathrm{L}$
Weight:	10-1/2 pounds
Antenna Dimensions:	
Height:	24-1/4"
Width:	$9^{\prime \prime}$ without groundplane dipoles $48^{\prime \prime}$ with groundplane dipoles
Weight:	7 3/4 pounds
Operation in Relative Winds:	Up to 100 Knots
Interconnect Cabling	One run of RG-58C/U between antenna and receiver
Controls:	
	Volume, ON/OFF
	Squelch, $\mathrm{DF} / \mathrm{MON}$. Channel Selector Dimmer, Rate fast/ Rate slow
Operating Temperature Range:	-20 to $+50^{\circ} \mathrm{C}$
Input Voltage:	115 VAC@ 0.3A
Receiver	
Sensitivity:	$\leqslant 1.0 \mu \mathrm{~V}$ for 10 dB SINAD, AM $\leqslant 0.5 \mu \mathrm{~V}$ for 12 dB SINAD, FM
Frequency Stability:	Phase locked to incoming signal
Squelch Threshold	Typ: $0.3 \mu \mathrm{~V}$
Adjacent Channel Rejection	70 dB min

Table 1-1. Direction Finder Specifications (Continued)

ITEM	PARAMETER
Receiver (Cont.)	
Intermodulation	60 dB min
Spruious Responses	70 dB min
Modulation Acceptance Bandwidth	$\pm 7 \mathrm{kHz}$ min
Audio Frequency Response	6 dB per octave deemphasis between
Antenna	Z $=500$ and $3,000 \mathrm{~Hz}$
Mounts on standard $1-1 / 2^{\prime \prime}$ antenna mast.	

The following paragraphs briefly describe direction finder operation and are keyed to figure 1-1. The principle functions to be described are Antenna Phasing (simulated rotation), rf Amplification and Demodulation, Analog Processing (recovery of the Doppler signal), Bearing Decoding and Display, and Audio Amplification and Squelch.
1.3.1 Antenna Phasing. - The antenna unit consists of a four-element antenna array with a ground plane and two circuit boards; Antenna Phasing Board 2A1 and Antenna Driver Board 2A2. A 4.019 kHz reference signal from the receiver is used to provide four antenna drive signals, identical in frequency but with a quadrature-phase relationship. These signals vary the bias on the variable attenuators (pin diodes) connected to each of the four antenna elements. The four rf signals are summed and applied to the received unit via the interconnecting coax cable. The result is that the stationary antenna array simulates a single antenna element rotating along a circular path at a rotation rate of 4.019 KHz , or $241,000 \mathrm{rpm}$.
1.3.2 RF Amplification and Demodulation. - The rf signal from the antenna is routed through a switching circuit to one of the two receivers. Each receiver is a double-conversion, superhetrodyne VHF receiver that amplifies and demodulates the rf input. When an FM channel is selected, the rf signal is applied to FM receiver 1A3. When the AM channel is selected, the rf signal is applied to AM receiver 1A4. Oscillator/Multiplier 1A6 provides the appropriate 1st local oscillator (L.O.) frequencies for both receivers.

In the FM receiver (1 A 3) the FM detector demodulates the rf signal to produce the FM DF and FM audio output. This signal contains voice, noise, and the Doppler component. The AM detector provides only the AGC signal for the receiver.

In the AM receiver (1A4) the FM detector produces a similar signal (voice, noise, and Doppler signal) but only the Doppler and noise componnts are used. The AM detector provides the AGC signal and a voice signal for direction finder audio circuits.
1.3.3 Analog Processing. - The Doppler component is recovered as follows:

The demodulated FM (FM DF or AM DF) signal from the selected receiver is applied by the audio switch to a commutating filter on analog board 1A7. The narrow bandwidth of the commutating filter extracts the Doppler modulation signal (4.019 kHz). The 4.019 kHz modulation signal is then applied to a zero crossing detector (ZCD) which produces a squarewave output.
1.3.4 Bearing Decoding and Display. - Relative bearing is determined on digital board 1 A 8 by comparing the phase of the ZCD Doppler (4.019 kHz) modulation signal with that of the ZCD reference (4.019 kHz) signal. The 4.019 kHz reference signal resets the bearing counter to zero when the simulated antenna position is zero degrees.

The counter is then incremented by the master clock at a rate that is 360 times the antenna modulation frequency. When the simulated antenna position is in line with the source of the received signal, the ZCD Doppler modulation signal loads the contents of the counter into a latch. Therefore, the count stored in the latch is a direct indication of the relative bearing of the radio transmission source.
1.3.5 Audio Amplification and Squelch. - The AM and FM audio components are applied to audio board 1A5 by the audio switch. An audio amplifier amplifies the audio signal and drives a loudspeaker. The audio switch also applies the undeemphasized FM outputs from the AM and FM receivers directly to a squelch circuit on the audio board. If the received signals are above a selected level, the audio output to the loudspeaker is enabled and the bearing display is also enabled. However, if the received signals are below a selected level, the audio and bearing display are both inhibited.

1.4 FUNCTIONAL DESCRIPTION

The following paragraphs provide a functional description of the direction finder keyed to the functional block diagram, figure 1-2. The functional block diagram is not intended to show circuit details. Schematics and wiring diagrams are provided in Section VII.
1.4.1 Antenna Phasing. - The receiver unit applies +15 Vdc and 4.019 kHz via coax cable to Antenna Driver Board 2A2. The dc voltage provides required biasing for Antenna Driver circuits. The 4.019 kHz is a sinusoidal reference signal which is converted by amplifiers U1D, U1A, UIC, and U1B of the Antenna Driver board to $0,90,180$, and 270 degree quadraturephased sinusoidal control signals, respectively. The four antenna drive signals, displaced from one another by 90 degrees, vary the attenuation of pin diodes CR4, CR1, CR2, and CR3 in Antenna RF Phasing Board 2A1. Each of the antenna elements is connected to a summing junction through one of the pin diodes.

The attenuation of the pin diode in each antenna path is varied independently, by one of the four antenna drive signals. The rf signal at the summing junction is phased modulated by the apparent rotational motion of the antenna elements. (The apparent rotational motion of the antenna elements is due to the quadrature relationship of the four antenna drive signals.) The summed rf signal is applied to the receiver (via board 2A2)through an isolation network. This signal contains the received rf component and a 4.019 KHz Doppler moduation component.
1.4.2 Receiver Switching.- CHANNEL switch S1 applies either the FM + or AM + signal to the receiver antenna switch on analog board 1A7 to enable one of the receivers. When an FM channel is selected, the rf signal is routed to FM receiver 1A3. When the AM channel is selected, the rf signal is routed to AM receiver 1 A4. Positions 1 through 8 of CHANNEL switch S1 select FM channels. Position 12 of the CHANNEL switch selects the AM channel (EPIRB frequency of 121.5 MHz).
1.4.3 RF Amplification and Demodulation. FM Receiver board 1A3, AM Receiver board 1A4, and Oscillator/Multiplier board 1A6 amplify and demodulate the rf signal. When one of the FM channels is selected, the rf signal is applied to pin JB-2 of FM receiver 1A3. The corresponding crystal controlled oscillator on oscillator/multiplier 1A6 is enabled to provide the appropriate first LO frequency for that channel.

The rf signal is amplified by two-stage rf amplifier Q1 and Q2, which is tuned to the 156 to 163 MHz frequency range. The amplified signal is applied to first mixer Q3. Automatic gain control (AGC) for the two-stage amplifier is provided by an AGC voltage that is derived from the AM detector U3. The amplified rf signal is mixed with the first L. O. frequency to provide a 16.9 MHz first IF. The first IF is filtered by crystal filter FL1 and mixed with a second LO frequency of 17.34625 MHz by mixer U1 to develop the 446.25 kHz second IF. The second IF is filtered and applied to second IF amplifier/FM detector U2 and AM detector U3.

The output of the FM detector is undeemphasized FM (audio/noise and 4.019 kHz FM DF), and the output from the second IF amplifier is the amplified second IF of 446.25 kHz . Undeemphasized FM is output to the audio switch. The 446.25 kHz 2nd IF signal is returned to oscillator/multiplier board IA6 for control of the first L. O. frequency. The AM detector output is amplified by U4A and returned to the two-stage rf amplifier as the AGC voltage.

When the AM channel is selected, the rf signal is applied to pin JB-2 of AM receiver 1 A 4 . This receiver functions in the same manner as the FM receiver. The principle differences between the FM and AM receivers are the frequency range (the AM receiver is tuned to 121.5 MHz), and processing of the audio components.

The FM detector outputs from board 1A4 are similar to those of board 1A3, bowever, there is no audio component. The AM detector on board 1A4 provides both the AGC voltage and an audio (voice) signal which is routed to the audio switch of analog board 1A7.

Oscillator/multiplier board 1A6 contains a phase detector and reference oscillator which, together with the first L.O. and the receiver form a phase-locked loop. When a channel is selected (AM of FM), one of nine crystals on board 1A6 is selected to produce the appropriate first L. O. frequency. The second IF frequency from the receiver is compared with a crystal oscillator-generated reference frequency $(446.25 \mathrm{kHz})$ by the phase detector. The resulting error voltage controls the crystal frequency; there by adjusting the first L. O. frequency in response to frequency variations in the rf signal. The tracking action of the phase-locked loop ensures that the first IF frequency of 16.9 MHz always will be centered in the crystal filter FL1, thus eliminating bearing changes due to varies changes in the received frequency.
1.4.4 Analog Processing. - The outputs of the receivers are routed through an audio switch on analog board 1A. If an FM channel is selected, undeemphasized FM is output to the notch filter on board $1 \mathrm{~A}_{6}$ and to the commutating filter and ZCD circuits of board 1A7. In an AM channel is selected, AM audio is output to the notch filter and deemphasized FM is applied to
the Commutating filter and ZCD circuits of board 1A7. The notch filter is described with the audio circuits. The commutating filter and ZCD circuits are described in the following paragraphs.

The undeemphasized FM from either the AM or FM receiver boards is applied to bandpass filter U1 in 1A7 by the audio switch via JB-9 and JA-9. Bandpass filter U1 is centered at the 4.019 kHz Doppler frequency. The output of the bandpass filter is applied to synchronous (commutating) filter U13 which has a very narrow passband centered at the 4.019 kHz Doppler modulation frequency. The bandwidth of the second commutating filter U14 may be varied by RATE switch $S 4$ to provide for either fast acquisition or slow acquisition with a more stable display. The commutating filters are synchronized to the master clock to minimize filterinduced phase-shift errors. The output of U14 is applied to lowpass filter U4/U5 which removes commutating harmonies. The filtered 4.019 kitz Doppler modulation signal is applied to phase shifter U6 which compensates for system phase shift to adjust for bearing zero at "dead ahead". The output of the phase shifter is applied to zero crossing detector U7 which produces a squarewave output at JC-7, ZCD (4.019 kHz Doppler) signal.

The ZCD (4.019 kHz ref) signal is developed from the 4.019 kHz ref signal. The zero crossing points of the ZCD (4.019 kHz ref) signal correspond to a simulated rotational antenna position of zero degrees.
1.4.5 Bearing Decoding and Display. - The two ZCD outputs of anlog board 1A7 are applied to digital board 1A8. Circuits of board 1A8 compare the phase of the ZCD (4.019 kHz Doppler) signal with that of the ZCD (4.019 kHz reference) signal. This phase comparison provides an indication of the relative bearing of the radio transmission source.

The ZCD (4.019 kHz reference) signal triggers reference one shot U14 which in turn resets the bearing counter. The bearing counter is then clocked by the master clock at $1,446.8 \mathrm{kHz}$ (360 times the simulated rotational rate of the antenna). The ZCD (4.019 kHz Doppler signal triggers ZCD one shot U2 which in turn loads seven-segment decoder latches U8, U9,
and U 10 with the bearing counter count. The decoder latch output is applied by display drivers to digital displays DS1, DS2, and DS3.

The display hold output of the squelch circuit on board 1A5 prevents loading of sevensegment decoder latcher U8, U9, and U10 when no signal is present. When the display hold signal is applied, the display is not updated but continues to display the last stored bearing. DIMMER control R4 controls the light dimmer circuit U17 and Q4, which in turn controls the intensity of the LED digital bearing display and of the dial lights.
1.4.6 Audio Amplification and Squelch. - Audio board 1A5 amplifies the audio signal from 1A7 to drive loudspeaker LS1. The squelch gate on circuit board 1A5 compares the rectified receiver noise level with a threshold level set by SQUELCH control 1R3. When no signal is received, excessive noise triggers the squelch gate to inhibit audio and provide the display hold signal to board 1A8.

For FM channels, the audio switch on board 1A7 routes the undeemphasized FM audio through de-emphasis filter R57 and C50 and to the notch filter on board 1A6. The notch filter removes the 4.019 kHz Doppler modulation component from the audio so that the Doppler signal cannot deteriorate audio quality. When the AM channel is selected, the audio switch on board 1A7 routes AM audio to the notch filter. The notch filter removes any 4.019 kHz signal which may be present on the AM audio. The audio output of the notch filter is applied via VOLUME control R2 to JA-6 of Audio board 1A5. The audio is amplified by power amplifier U2 and applied via JA-9 to loudspeaker LS1.

For both AM and FM channels, undeemphasized FM audio is routed by the audio switch on board 1A7 to the squelch circuit on board 1A5. The squelch filter removes any audio voice frequencies and passes only noise centered around 25 kHz . Comparator UID
compares the level of the rectified noise with a dc voltage level set by SQUELCH control 1R3. If the noise level is higher than the squelch gate setting, squelch gate Q3 inhibits the audio signal. In addition, the application of a ground to mute jack 1 J 4 inhibits the audio signal.
1.4.7 Power Supply 1A2. The power supply operates from a $115-\mathrm{V}$ ac source to provide unregulated and regulated dc operating voltages for the circuits of the direction finder. The power supply is fused and provides rectified +12 V dc , regulated +15 V dc , and filtered +24 V dc to direction finder circuits.

1.5 CIRCUIT DETAILS

The following paragraphs provide detailed descriptions of direction finder circuits. Common circuits are identified but not described.
1.5.1 Antenna Unit. - The Antenna unit consists of four vertical elements, a four-element ground plane and two printed circuit boards which provide antenna drive and rf phasing. The antenna unit is connected to the receiver unit by a single coaxial cable which provides power and a $4-\mathrm{kHz}$ drive signal to antenna circuits and also routes rf from the antenna to the receiver unit.
1.5.1.1 Antenna - General. - The antenna consists of four vertical rods, each of which is approximately $1 / 4$-wavelength long (25 cm), and two circuit boards. The rods are located symmetrically about the circumference of a circle with a 4.25 cm radius. In addition four horizontal rods protruding from the antenna base create a ground plane which establishes the proper radiation pattern for the vertical elements and prevents bearing errors resulting from signals that are reflected from the ship. The two printed circuit boards are mounted within the base of the antenna.
1.5.1.2 Antenna Driver Board 2A2. - The antenna driver board consists of a voltage divider network, a phase-shift network, and four drive amplifiers. This assembly receives power and a 4.019 kHz signal from the receiver unit and provides four separate 4.019 kHz outputs to the rf phasing board. While one output is in phase with the input signal, the remaining outputs are phase-shifted 90 degrees, 180 degrees, and 270 degrees, respectively. (Refer to figure 7-21 for a schematic diagram of the antenna driver board.)

The input from the receiver unit is +15 VDC power and a 4.019 kHz oscillator-generated signal. The two inputs are applied via connector $2 J 1$ and passed unchanged through rf choke L1. The +15 VDC input filtered and attenuated produce the +12 VDC B+ voltage and a +4.5 VDC bias voltage for the drive amplifiers. The 1.019 kHz input is applied to noninverting operational amplifier U1A and output to rf phusing board 2A1 via emitter follower Q1. The Q1 output is also applied to the inverting input of operational amplifier U1B. The resulting signal, which is 180 degrees out of phase with the Q1 output, is routed to board 2 A1 via emitter following Q2. The Q2 output is also routed through phase-shift network C10, R23, and R27, and applied to non-inverting operational amplifier U1C. The phaseshift is adjusted to 90 degrees. The resulting signal from U1C has been phase shifted 270 degrees from the J1 input. This signal is output to board 2A1 via emitter follower Q3 and applied to the inverting input of operation amplifier U1D. The resulting signal is output via emitter follower Q4 to board 2A1. As shown by the foregoing, the 4.019 kHz input from the receiver unit is output to board 2A1 as four separate 4.019 kHz signals which have a quadrature phase relationship.

In addition to providing antenna drive signals, the rf output of the antenna is routed to the receiver unit via antenna driver board 2A2. The rf signal from board 2A1 is applied through capacitor C6 and output to the receiver via connector J1. The choke (L1) prevents rf
interference with the four drive amplifiers, just as capacitor C6 prevents the passage of dc (+15 V dc) and the 4.019 kHz antenna drive.
1.5.1.3 Antenna RF Phasing Board 2A1. - The antenna rf phasing board consists of four electronically-controlled variable attenuators through which the four antenna elements are connected to a common output. The four attenuators are driven by the four 4.019 kHz inputs from antenna driver board 2A2. The quadrature-phase relationship between the drive signals causes the attenuators to be varied simultaneously but in a quadrature manner. Thus, when one circuit provides its minimum attenuation, a second circuit provides its maximum attenuation and the remaining two circuits are at the midpoint of the adjustment range (one increasing, the second decreasing). The varying attenuation results in a signal which duplicates many of the characteristics found in rotating antenna systems, thus simulating antenna rotation at a 4.019 kHz rate. (Refer to figure 7-20 for a schematic diagram of the antenna rf phasing board.)

Since the four antenna circuits of board 2A1 are identical, only that portion associated with the Q1 output on board 2A2 is described here. The 4.019 kHz input is applied to resistors R5 and R9 and to capacitor C9. The ac component of the signal bypasses the resistors, is passed unchanged through rf choke L2, and is applied directly to PIN diode CR1. The dc component of the signal is passed through resistors R5 and R9 which have been factoryselected to ensure identical characteristics in each of the four circuits. The resulting current, which determines the rf resistance of PIN diode CR1, flows through resistors R5 R5 and R9, rf choke L2, PIN diode CR1, and rf choke L9.

The rf signal from the antenna is applied to PIN diode CR1 through capacitor C1. The capacitor isolates the antenna from dc voltages while rf choke L1 prevents static buildup in the antenna. The rf signal is attenuated by PIN diode CR1 and summed with signals from the other antennas at the input of inductor L10. The resulting signal is routed to the receiver unit via capacitor C 6 and connector J 1 on board 2A2.

1-18
1.5.2 Receiver Unit. - The receiver unit consists of the chassis assembly and seven printed circuit boards. All chassis-mounted components are mounted on the chassis baseplate and on the front and rear panels.
1.5.2.1 Power Supply 1A2. - The direction finder power supply consists of transformer T1, which is located on the chassis baseplate, and the circuits of power supply board 1A2. These circuits include a fullwave rectifier, a filter, and a voltage regulator. The power supply provides rectified +12 VDC, filtered +24 VDC and regulated +15 VDC for direction finder operation. (Refer to figure 7-13 for a schematic diagram of the power supply.)

The 115 VAC input power is applied via rear-panel connector 1 J 1 , fuse 1 F 1 , and the on/off switch on the VOLUME control. When the VOLUME control is set to on, input power is applied across varistor A2CR2 and to the primary of transformer 1 T 1 . A varistor protects the direction finder from damage due to input power transients of greater than 150 volts.

The ac input is transformed to 24 volts (rms) by transformer T1, and connected to bridge rectifier A2U1. The dc output from A2U1 is routed through a filter consisting of resistors R1 and R2, and capacitors C1 and C2. The filter removes ac hum.

The filtered +24 VDC is output to audio board 1A5 and to boards 1A7 and 1A8. This voltage is also returned to board 1 A 2 and applied to +15 V dc regulator U 2 . Capacitor C3 and C4, and diode CR3 protect the regulator from oscillations and polarity reversal. The regulated +15 VDC output is supplied to all boards in the direction finder as the B^{+} voltage for circuit operation.
1.5.2.2 FM Receiver $1 \mathrm{~A} 3(156-163 \mathrm{MHz})$. - The FM receiver is a crystal-controlled, double-conversion superhetrodyne VHF/FM receiver with automatic gain control (refer to figure 7-14 for a schematic diagram of FM receiver 1A3.)

The rf input from board 1A7 is applied through two dual-gate MOSFET rf amplifiers (transistors Q1 and Q2) and applied to first mixer A3. The two amplifiers are tuned to the 156 MHz to 163 MHz frequency range. Automatic gain control (AGC) for both amplifiers is implemented by varying the voltage at pins 2 of transistors Q1 and Q2. (The generation of the AGC voltage is described in following paragraphs.)

Transistor Q3 is a dual-gate MOSFET mixer. The amplified rf signal is mixed with the local oscillator (first LO) signal (from oscillator/multiplier board 1A6) to produce the first intermediate frequency (first IF) of 16.9 MHz . The tuned circuit at the mixer output (L7, $\mathbf{C} 25$, and C27) is tuned for 16.9 MHz . The first IF signal is then filtered by 8 -pole crystal filter L1 to remove harmonics, adjacent channel frequencies, and other undesireable signal components. The narrow bandwidth of the filter (approximately 15 kHz) passes only the selected channel frequency.

The filtered first IF signal is mixed in second mixer U1 with the second local oscillator signal (17.34625 MHz from oscillator Q4/Y1) to produce the second IF frequency of 446.25 kHz . (Refer to figure 1-3 for a simplified schematic diagram of the second mixer.) The resulting signal is filtered by tuned LC filter L9, C40, C41, and C69, to remove harmonics and mixergenerated frequencies. The signal is then buffered by emitter follower Q5 and applied to FM detector U2 and AM detector U3.

The second IF amplifier/FM detector (U2) is a limiter amplifier and quadrature detector. (Refer to figure 1-4 for a simplified schematic diagram of the circuit.) The limiting amplifier amplifies and limits the IF signal to prevent the detection of AM noise. The quadrature detector demodulates the FM signal. The audio output of the second IF amplifier/FM detector is undeemphasized FM audio, which is routed to board 1 A7 as the FM DF signal. Another output is the amplified second IF frequency (446.25 kHz) which is routed to oscillator/multiplier board 1A6.

2ND IF (446.25 KHz)

The second IF frequency is also applied to AM detector U3. (Refer to figure 1-5 for a simplified schematic diagram of the circuit). This circuit detects variations in input signal strength and produces an output (pin 1) which is used to operate AGC comparator/ amplifier U4A. Amplifier U4A compares the varying dc voltage from AM detector U3 with a dc voltage from AGC potentiometer R28. (Refer to figure 1-6 for a simplified schematic diagram of the AGC system.) When the receiver input is less than expected (or no input), the voltage at pin 5 of comparator/amplifier $U 4 A$ will be greater than the signal at pin 6 . This condition results in an increased voltage at U4A pin 7. Conversely, when the rf input level is greater than expected, the output of comparator/amplifier U4A will be decreased.

The U4A output is translated by diodes CR9 through CR11 and resistors R35 and R36 to a level that is suitable for application to rf amplifiers Q1 and Q2. The AGC signal is output from the assembly on pin A8 and returned to the assembly (via chassis wiring) on pin B4. The voltage is then applied to pins 2 of transistors Q1 and Q2 as the AGC voltage.
1.5.2.3 AM Receiver $1 \mathrm{~A} 4(121.5 \mathrm{MHz})$. - The AM receiver is similar to the FM receiver, but is tuned to 121.5 MHz . In addition, a filter circuit U 4 B which is present but not used in the FM receiver, filters the AM audio signal for proper audio response. (Refer to figure 7-15 for a schematic diagram of AM receiver 1A4.)

The remaining AM receiver circuits are identical to those of the FM receiver. These circuits have been described as a part of the FM receiver and, consequently, circuit descriptions are not repeated here. (Comparison of schematic diagrams will show that the amplifiers, filters, and mixers are identical, except that the two rf amplifiers have been tuned to different frequencies.)

Figure 1-6. AGC System Simplified Schematic Diagram
1.5.2.4 Audio Assembly 1A5. - The audio assembly consists of the noise-activated squelch circuit and the audio power amplifier which drives the speaker. The squelch circuit provides audio noise suppression in the absence of an rf signal input to either receiver. The power amplifier provides a 2.5-watt output to the speaker. (Refer to figure 7-16 for a schematic diagram of the audio assembly.)

The squelch control input is undeemphasized FM audio (AM DF or FM DF) from the audio switch circuit on board 1A7. This signal is applied through a $25-\mathrm{kHz}$ bandpass filter consisting of operational amplifiers U1A and U1B. The filter removes voice frequencies and passes only $25-\mathrm{kHz}$ noise. (The output of the filter can be monitored at test point TP1.) The noise signal is then rectified by positive peak detector U1C and applied to comparator U1D.

Comparator U1D compares the level of the rectified noise signal with a de voltage set by SQUELCH control 1R3. When no rf signal is applied to the selected receiver, the rectified noise signal will be at its maximum, and more positive then the SQUELCH-selected reference voltage. Since the noise signal is positive, the output of comparator U1D (pin 10) is high. This signal turns on squelch gate Q1, effectively grounding the audio input to the power amplifier. As the rf input to the receiver (AM or FM receiver) increases, the FM "quieting" action of the receiver decreases the level of the rectified noise signal. When this signal becomes less positive than the SQUELCH - selected reference voltage, the pin 10 output of comparator U10 goes low. This signal turns off squelch gate G1, allowing the audio signal to be amplified (U2) and output to the speaker.

Squelch gate Q1 can also be controlled by the mute input. Applying a ground via rear panel MUTE connector 1 J 4 results in a high output from comparator U1D. This signal turns on the squelch gate, grounding the audio input signal.

Power amplifier U2 is a monolithic integrated circuit that amplifies the audio input to provide approximately 2.5 watts into $16-\mathrm{ohm}$ speaker LS1. A description of amplifier U2 is provided in figure 7-12.
1.5.2.5 Oscillator/Multiplier Board 1A6. - The oscillator/multiplier board consists of two crystal oscillators, two X3 frequency multipliers, a phase detector, and filters and operational amplifiers, all of which function together with the active receiver to control the local oscillator frequency. The aforementioned circuits and the active receiver form a phaselocked loop that tracks frequency variations in th $1[$ input and makes the appropriate adjustment in local oscillator frequency. (Refer to figure 7-17 for a schematic diagram of the oscillator/multiplier board.)

While circuit operation begins when a channel is selected, the following discussion assumes that the unit is operating normally and that a signal is being received.

Each of the nine channel selection crystals are part of a varactor-controlled crystal oscillator (VCXO) which generates the ninth subharmonic of the desired local oscillator frequency. Crystals Y1 through Y6 function with transistor Q2 while crystals Y7, Y8, and Y12 function with transistor or Q1 (implementation of frequency control is described in the following paragraphs). Only the selected crystal functions with transistors Q1 and Q2 to form the local oscillator.

While the oscillator functions at the crystal frequency, the collector of transistor Q2 is tuned to the third harmonic frequency. The resulting signal is applied to X3 multiplier Q3 to produce the first LO frequency. The signal is then filtered by tuned amplifier Q4 and output to both of the receivers.

During operation, only one of the receivers will be active for a given channel selection. The 2nd IF signal (446.25 kHz) from the active receiver is returned to the oscillator/ multiplier board for use in controlling the VCXO frequency, through the AFC, (Automatic Frequency Control) system.

The second IF input from FM receiver 1A3 or AM receiver 1A4 is applied via summing amplifier U2E. The 446.25 kHz signal is then applied as one input of phase detector U 1 . The second input to the phase detector is a precise 446.25 kHz from crystal oscillator Y13/ U2A. The resulting signal is filtered ($\mathrm{R} 43, \mathrm{R} 44, \mathrm{C} 54$) to produce a dc voltage that is proportional to the frequency difference between the inputs.

The filtered phase detector output is buffered by operational amplifier U2C and applied to VCXO diodes CR1 through CR8. The signal is also inverted by operational amplifier U2D and applied to VCXO diode CR12. (The inversion is necessary because lowside injection is used in the FM receiver while high side injection is used in the AM receiver.) If a difference exists between the second IF frequency and the reference 446.25 kHz signal, (from Y13/J2A), the resulting voltage applied to the varactor diode will correct the crystal frequency until both the $2 n d$ IF and reference frequencies are identical.

Board 1A6 also contains a notch filter that is a part of the audio circuit. The audio output of the audio switch on board 1A7 is routed through this notch filter to remove the 4.019 kHz Doppler component. The remaining signal (audio) is output to the volume control and then to audio amplifier board 1A5.
1.5.2.6 Analog Board 1A7. - The analog board consists of the receiver antenna switch, antenna driver, audio switch, DF filter logic (bandpass and commutating filters), bearing adjust switch and phase shifter, and the DF zero crossing detector. The signals are derived from a common source to maintain fixed timing relationships. (Refer to figure 7-18 for a schematic diagram of the 1A7 board.

Antenna Drive/Receiver Switch. - As previously stated, a single cable carries +15 V dc and the 4.019 kHz drive signal to the antenna, and carries the received rf signal from antenna to receiver. The following paragraphs describe the circuits of board 1A7 which provide the antenna receiver/interface. The +15 V dc power for antenna circuits is derived from antenna driver U10/Q1. The +15 V dc input across resistor R68 is buffered by U10/Q1 and output to the antenna through rf choke L1. Resistor R74 and transistor Q2 provide short circuit protection.

The 4 kHz antenna drive signal is derived from the 4.019 kHz QA output on board 1A8 (via 1 A 7 - JA4). The squarewave input is first converted into a sinewave by a bandpass filter consisting of operational amplifier U 8 and the associated components. The resulting sinewave is applied to zero crossing detector U9, and also routed through drive level adjust potentiometer R54 to antenna driver Ul0/Q1. Zero crossing detector U9 reconverts the sine wave to a squarewave for use by digital board 1A8. The drive level adjust potentiometer sets the drive level to the antenna and is nominally adjusted for a 2 -volt (peak-to-peak) output on pin JC-2. (The voltage can be measured at test point TP2.) The antenna drive signal is output through rf choke L1 and pin JC-2, and routed to the antenna. The rf signal from the antenna is input via pin JC-2 but blocked from antenna driver circuits by rf choke L1. The signal is passed by capacitor C65 and applied to receiver antenna switch diodes CR1 and CR2.

If an FM channel is selected, diode CR2 is forwarded biased and the rf signal is passed to FM receiver 1A3 via pin JC-4. Conversely, if the AM channel is selected diode CRI is forward biased and the rf signal is passed to AM receiver 1 A 4 via pin JC-3.

Audio Switch. - The audio switch routes undeemphasized FM and audio to the audio output circuits. The FM DF and AM DF signals are the outputs of the FM detectors in the two receivers. Depending on the selected receiver (AM or FM) one of these signals is active and is routed (via the audio switch) to the DF filter and to the squelch circuit on audio board IA5. In addition, the AM audio signal, or FM DF after deemphasis by filter R57/C50 is routed to the audio amplifier on board 1A5 via the notch filter on oscillator/multiplier board IA6 and the volume potentiometer.

DF Filter- The DF input (uneemphasized FM audio) is; first filtered by bandpass filter Ul, which removes audio, noise, and other undesireable frequencies. The remaining signal (4.019 kHz) is filtered by commutating filter consisting of U13, resistor R8, and capacitors Cl0 through Cl3. This high $-Q$ synchronous filter is centered at 4.019 kHz , and is clocked by four signals which are derived from the quadrature generator on board IA8.

The filtered 4.019 kHz Doppler modulation signal is buffered by operational amplifier U2. The rate switch and resistors R13 and Rl set the bandwidth of a second commutating filter (U14 and C14 through C17). The second commutating filter is also centered at 4.019 kHz .

The two commutating filters are controlled by the gates of $U 3$. The $\mathrm{QA}, \overline{\mathrm{QA}}, \mathrm{QB}$ and $\overline{\mathrm{QB}}$ inputs are the four quadrature phases of the 4.019 kHz clock. The gates of U 3 convert the $\mathrm{QA}, \overline{\mathrm{QA}}, \mathrm{QB}$ and $\overline{\mathrm{QB}}$ signals into four equal clock outputs which also have a quadraturephase relationship.

The output of the second commutating filter is routed to a lowpass filter consisting of operational amplifiers U4 and U5, and the associated components. This filter removes harmonics created by the two commutating filters.

The filtered 4.019 kHz Doppler modulation signal is applied to a phase-shift network consisting of operational amplifier U6, switch U2, and the associated circuits. The switch is controlled by the front-panel channel selector which switches in either AM bearing adjust potentiometer R32 or FM bearing adjust potentiometer R33. The output of the phase-shifter is applied to zero crossing detector U7. The output of the zero crossing detector is a 4.019 kHz squarewave whose leading and trailing edges coincide with the zero crossing points of the Doppler modulation signal from the antenna.
1.5.2.7 Digital Board 1A8. - The digital board consisis of a $5787.2-\mathrm{kHz}$ crystal oscillator, frequency dividers which produce the basic clock frefuencies from the oscillator frequency, and bearing decode and display circuits. In addition, the display dimmer is included on board 1A8. (Refer to figure 7-18 for a schematic diagram of digital board 1A8.)

Oscillator and Frequency Dividers. - Crystal oscillator Y1/Q1 produces a 5787.2 kHz output from which all direction finder frequencies are derived. The signal is applied to a divide-by-four circuit consisting of D-type flip-flops U1A and U1B. The frequency divider provides a 1446.8 kHz output which is 360 times the simulated rotational rate of the antenna. This signal is a timing reference which contains one pulse for each degree of simulated antenna rotation.

The 1446.8 kHz signal is applied to bearing decode circuits and to a divide-by-360 circuit which produces the 4.019 kHz reference for antenna and receiver operation. The 4.019 kHz signal is output via quadrature generator U16A/U16B to board 1A7.

Bearing Decode. - Bearing is decoded by comparing the phase of the ZCD 4.019 kHz Doppler) input with that of the ZCD (4.019 kHz reference) input. The ZCD (4.019 kHz Doppler) input is applied to a one-shot consisting of flip-flop U2A/U2B and the associated circuits. This circuit produces a series of 691-nanosecond pulses which occur at 249-microsecond intervals. The timing relationships are thus;
(a) 691 nanoseconds is the duration of one degree of simulated antenna rotation.
(b) 249 microseconds is the duration of one complete (simulated) antenna revolution (360°)
(c) The timing of the 691 nanosecond pulse, with respect to the 0 degree reference is the relative bearing of the received rf signal.

The ZCD (4.019 kHz reference) input is applied to a one-shot consisting of flip-flops U14/ U14B and the associated circuits. This one-shot also produces a series of 691-nanosecond pulses occurring at 249 -microsecond intervals. This 691 -nanosecond pulse is the 0 degree reference.

The reference pulse from one-shot U14A/U14B zeroes counters U6B, U7A, and U7B when simulated antenna position is 0 degrees. The counter is then incremented by the 1446.8 kHz signal from the oscillator/frequency divider, providing a count which is repeatedly incremented from 000 to 359 and reset to zero, and is representative of simulated antenna position.

The pulse from ZCD one-shot U2A/U2B triggers a latching 3-bit BCD-to-seven segment decoder, which stores the contents of the counter when that count is equal to the relative bearing of the received rf signal. The output of the latching BCD to seven-segment decoder is applied to display drivers, U11, U12, and U13 which power the LED bearing display.

Display Hold. - When the signal at the output of the AM or FM receiver, respectively is below the reference level set by SQUELCH control R3, the display hold input to JA7 goes high, turning on transistor Q2. When Q2 is turned on, ZCD one shot U2 is inhibited,
preventing the bearing display of the received signal. When the signal at the output of the FM or AM receiver, respectively rises above the level set by the SQUELCH control, JA7 goes low, and Q2 turns off. U2 is enabled and normal decoding of bearing continues.

Light Dimmer. - A voltage from 0 to 15 volts is applied by dimmer control R 4 to display light dimmer circuit Q4 via JA-H. Potentiometer 1R4 controls the Q4 output voltage and therefore the voltage applied to the dial lights via JA9.

The variable dc voltage also controls the duty cycle of the $2-\mathrm{kHz}$ squarewave at U17. This signal is applied to the blanking input of display decoders U8, U9, and U10 to control the brightness of the bearing display.

SECTION II - INST ALLATION

2.1 INTRODUCTION

This section provides installation instructions for the direction finder. Included herein are site preparation data and installation requirements, and procedures for unpacking, inspection, installation, initial turn on, and installation test.

2.2 SITE PREPARATION

Site preparation information for the direction finder includes environmental limitations, power requirements, and mounting considerations.
2.2.1 Environmental Limitations. - Environmental limitations for the direction finder are specified in table 2-1.

Table 2-1. Direction Finder Environmental Limitations

ITEM	SPECIFICATION
Temperature	
Operating	-20 C to +55 C
Storage	-30 C to +55 C
Humidity	$\leqslant 95$ percent (non-condensing)
Wind	$\leqslant 100 \mathrm{MPH}$ (80 MPH with up to
	$1 / 2$-inch radial ice loading)

2.2.2 Power Requirements. - The direction finder operates from $115 \mathrm{~V} \mathrm{ac}, 50$ to 60 Hz , and is protected by a 1-ampere fuse. The nominal current is 0.3 amperes.
2.2.3 Mounting Requirements. - The receiver and antenna may be mounted in any convenient locations. When installing the direction finder, the following guidelines should be observed.
(a) The receiver can be mounted in any orientation (Refer to figure 2-1).
(b) If the receiver will be exposed to the elements when mounted, do not mount receiver with front or rear panels facing upwards.
(c) The antenna should be mounted above, or at least 18 feet from all metal obstructions. Reflective surfaces that are closer than 18 feet to the antenna must be at least 3 feet below the level of the antenna ground plane.

2.3 UNPACKING AND INSPECTION

When unpacking the direction finder, check for damage that may have occurred in transit. The unit should be free of mars and scratches. The direction finder is shipped in several packages. Open all containers and locate the packing list. Verify that all direction finder components have been received and are undamaged. Check for broken controls, connectors, or fuseholder, dented or scratched surfaces, and loose or broken components.

2.4 INSTALLATION REQUIRE MENTS

Installation requirements are described in the following paragraphs. Insure that all installation requirements are met prior to beginning installation of the direction finder.
2.4.1 Tools Required. - The direction finder can be installed using ordinary hand tools and the coaxial cable crimping tool recommended in table 2-2.
2.4.2 Test Equipment Required. - While the direction finder can be installed without the use of test equipment, a voltmeter and ohmmeter should be available for verification of the input voltages and connector installation. Refer to table 2-2 for a list of recommended test equipment.

Figure 2-1. Receiver Mounting Positions

Table 2-2. Tools and Test Equipment Required for Installation

ITEM	CRITICAL SPECIFICATIONS	RECOMMENDED ITEM AND MANUFACTURER
Crimping Tool for Coaxial Cable	N/A	Part Number 69478-1, Amp Incorporated (Harrisburg, PA)
AC Voltmeter	Any standard VOM	
Volt-ohmmeter	Any standard VOM	Simpson 260

2.4.3 Power Source. - Prior to installation of the direction finder, verify that the power source supplies the desired voltage and that the interconnection point is wired correctly. In addition, the direction finder must be grounded. Próceed as follows:
(a) Verify that the power outlet is correctly wired witl respect to ac potentials, ac neutral, and earth ground. Correct all deficiencies before proceeding.
(b) Verify supplied voltage using an ungrounded ac voltmeter. The supply voltage must be in the range of 103.5 to 126.5 volts ac (rms).
(c) Verify that the earth ground wire from the power source is connected to vessel ground.
(d) Verify that fuse 1 F 1 of the direction finder is a 1 -ampere fuse.

CAUTION

For safety, even though a three-wire power cable is used, it is mandatory that a connection be made between the direction finder chassis and earth ground. Ensure that the earth ground wire is connected to the vessel earth ground.

2.5 INSTALLATION INSTRUCTIONS

The following paragraphs provide installation procedures for the direction finder.
2.5.1 Preliminary Procedure. - Prior to installing the direction finder, perform the following:
(a) Determine the mounting locations of the receiver and antenna. (Refer to paragraph 2.2.)
(b) Determine the length of cable required to interconnect the receiver and antenna. A 125 -foot cable is provided with the direction finder. This cable may be shortened to the required length.
(c) Eliminate any rotational 'play" in the antenna mast. (Antenna movement will result in bearing errors.)
2.5.2 Antenna Installation. - The antenna-should be installed as high as possible to maximize reception range and minimize interference from metallic elements of the vessels structure. In addition, the antenna should have unobstructed reception paths in all directions (360 degrees) from the vessel. Reflective surfaces in the vessels structure should be at least 3 feet below the level of the antenna ground plane. In the event that it is not feasible to install the antenna above all obstructions, the antenna should be 18 feet (minimum) from obstructions to minimize their effect. Proceed as follows:
(a) Secure a $1-1 / 2^{\prime \prime}(\mathrm{OD})$ pipe to the mast or antenna mounting structure. The pipe must be mounted upright and secured to prevent movement and rotation.
(b) Remove antenna, antenna ground radials, and coaxial cable from shipping containers.
(c) Determine antenna mounting position and verify that the coaxial cable is of sufficient length to reach from antenna to receiver. (A 125-foot cable is supplied with the direction finder).
(d) Remove the eight No. 6-32 captive screws which secure the antenna (base) to antenna mount. (Refer to figure 2-2.) Disconnect antenna mount from antenna.

Figure 2-2 Antenna Installation Drawing (Sheet 1 of 2)

Figure 2-2. Antenna Installation Drawing (Sheet 2 of 2)

NOTE

Improper installation of the coaxial cable could affect the accuracy and stability of the direction finder. Avoid sharp bends or crimps in the cable. If cable is nicked or cut during installation, replace cable.
(e) Connect coaxial cable to antenna. (The SMA plug should be joined to connector 2A2J1 in the antenna.)
(f) Feed coaxial cable through antenna mount and secure mount to antenna, using the eight No. 6-32 screws removed in step d. (An alignment pin is provided to show the correct orientation of mount to antenna.) Allow slack in cable at antenna to facilitate later separation of antenna and mount.

NOTE

Do not allow the full weight of the coaxial cable to be supported by the SMA connector in the antenna. Use ty-wrap strain reliefs (1 each 10 -feet) to support the cable.
(g) Feed coaxial cable through pipe installed in step 1. Place antenna mount on pipe, as shown in figure 2-2. (Do not secure antenna to pipe.)
(h) Rotate antenna to align 0 -degree antenna element with bow to vessel. (A lump in the antenna insulators indicates 0-degrees.)
(i) Secure antenna mount to pipe using the six No. 10-32 set screws shown in figure 2-2.
(j) Install ground plane radials in antenna base. Secure ground plane radials to base using the set screws provided. Double-set screw for vibration protection.
(k) Lay cable to position of receiver unit. (Do not install BNC connector on cable until so directed by receiver installation procedures.
2.5.3 Receiver Installation. - The receiver unit may be mounted in any convenient location or orientation, as shown in figure 2-1. (Refer to paragraph 2.2.3.) The mounting bracket should be used as a template for locating the mounting screws. The mounting bracket should then be secured to the mounting surface with No. 8 screws. While mounting the receiver is a simple and obvious task, installation instructions are required for interconnection of the receiver with the antenna and power source. The cables are supplied with only one end terminated and at standard lengths. The cables must be cut to the required length and connectors installed (where required) during direction finder installation.
2.5.3.1 Power Cable. A 20 -foot, 3 -conductor power cable is supplied with the direction finder. This cable should be used for connection to the ac power source. Proceed as follows:
(a) Determine desired cable length and remove excess cable. (If additional length is required, replace cable. Do not locate receiver more than 50 feet from the power source/outlet.)
(b) Connect cable to power source. Each wire should be connected by crimping or solder (terminals not supplied).
(c) Connect cable to receiver unit.

Table 2-3. Power Cable Pin Assignment

WIRE COLOR	PIN	FUNCTION
Black	A	Power
Green	B	Ground
White	C	Neutral

2.5.3.2 Antenna Cable. - A 125-foot, RG58C/U coaxial cable is supplied for connecting antenna to receiver unit. This cable must be cut to the proper length and a BNC connector must be installed. Proceed as follows:

NOTE

Improper installation of the coaxial cable could affect the accuracy and stability of the direction finder. Avoid sharp bends or crimps in the cable. If cable is nicked or cut during installation, replace cable.
(a) Determine desired cable length and remove excess cable.
(b) Strip cable as shown in instructions supplied with connector.
(c) Install connector. Crimp connector to cable with crimp tool as shown in instructions supplied with tool.
(d) Disconnect cable from antenna. Using ohmmeter or continuity tester, check for short circuits with the connector.

Note: Since DC voltage is carried on the coaxial cable, a finite resistance ($\approx 13 \mathrm{k} \Omega$) will be observed.
(e) Reconnect cable to antenna. Connect cable to connector 1 J 3 of receiver unit.

2.6 INSTALLATION TEST AND ADJUSTMENT

Upon completion of installation, perform the following procedure to test and adjust the direction finder. Proceed as follows:
(a) Verify that the power and antenna cables are properly connected to the receiver rear panel.
(b) Inspect direction finder fuse.
(c) Rotate VOLUME control clockwise to turn on direction finder.
(d) Set CHANNEL switch to an inactive (no signal) channel.
(e) Rotate DIMMER control to maximum clockwise position.
(f) Push MODE switch into DF position.
(g) Verify that the panel lights are lighted and that an LED display occurs.
(h) Rotate DIMMER control back and forth and observe that LED display is alternately bright (fully CW) and dim as DIMMER control is rotated in counterclockwise direction.
(i) Rotate SQUELCH control fully counterclockwise.
(j) Adjust VOLUME control so that noise can be heard, but at a comfortable level.
(k) Slowly rotate SQUELCH control in the clockwise direction to the point at which noise is no longer present. (Do not set SQUELCH control further clockwise than necessary.
(1) Using CHANNE L switch, select an active (signal present) channel. Check for audio and a stable bearing display.
(m) Remove top cover from receiver unit and adjust potentiometers 1A8R32 and 1A8R33 as specified in paragraph 4.5.4.
(n) Reinstall top cover on receiver unit.
(o) Slowly turn the vessel and verify that the direction finder provides the proper display as relative bearing changes.

SECTION III - OPERATION

3.1 INTRODUCTION

This section provides operating instructions for the direction finder. Controls, indicators, and connectors are illustrated and described. Operating procedures, including turn-on, normal operation, and operator checks are provided.

3. 2 CONTROLS, INDICATORS, AND CONNECTORS

The controls, indicators, and connectors of the direction finder are illustrated in figure 3-1 and described in table 3-1. Table 3-1 lists the nomenclature and function of each control, indicator, and connector.

3.3 OPERATING PROCEDURES

The following paragraphs provide basic operating procedure for the direction finder.
3.3.1 Direction Finding Mode Operation. - To operate the direction finder in DF mode proceed as follows:
(a) Rotate VOLUME control in clockwise direction. (Do not adjust for maximum volume but apply power to the direction finder.)
(b) Set DIMMER for convenient illumination level.
(c) Rotate SQUELCH control to the maximum counterclockwise position.
(d) Set CHANNEL switch to desired channel.
(e) Set VOLUME control to convenient listening level. (Receiver noise should be heard.)

1. RATE SWITCH, DIMMER ADJUST
2. RELATIVE BEARING DISPLAY
3. MODE SWITCH, SQUELCH ADJUST
4. VOLUME, ON-OFF SWITCH
5. CHANNEL
6. FUSE 1A SLO-BLO
7. MUTE J4
8. 115VAC J1
9. TEST J2
10. ANTENNA J3

Figure 3-1. Receiver/Display Unit, Controls, Indicators, and Connectors

Table 3-1. Controls, Indicators and Connectors

FIGURE INDEX NO.	ITEM	FUNCTION
3-1-1	RATE/DIMMER 1R4	Switch/potentiometer. When pulled to out (FAST) position, fast bearing acquisition rate is selected (appr. 5 sec). When pressed to in (SLOW) position, slow stable bearing acquisition rate is selected (appro. 10 sec). Fully CCW dims panel lights and DEGREES (bearing) indicator. Fully CW is full brightness.
3-1-2	$\begin{aligned} & \text { DEGREES } \\ & \text { 1DS1, 1DS2, } \\ & \text { 1DS3 } \end{aligned}$	Three-digit LED display. Displays relative bearing of received signal.
3-1-3	MODE/SQUELCH 1R3	Switch/potentiometer. When in MONITOR position, the direction finder functions as a receiver only. When pressed to DF position, the direction finder functions as a receiver and displavs the relative bearing of the received signal. H'ully CW is maximum noise $\operatorname{SQUELCH}$ setting. Fully CCW, is minimum noise SQUELCH setting.
3-1-4	VOLUME 1R2	Switch/potentiometer. When set to OFF (counterclockwise) position, primary power for the direction finder is turned off. Rotating the VOLUME control clockwise turns on the direction finder and sets the audio volume level.
3-1-5	CHANNEL 1S1	Rotary switch. Twelve-position switch used to select operating channel for direction finder. Switch positions are:
		Position Switch Legend Channel Frequency
		$106 \quad 156.3 \mathrm{MHz}$
		212.156 .6 MHz
		3 l
		$4 \quad 14$
		$5 \quad 16 \quad 156.8 \mathrm{MHz}$
		$6 \quad 22 \mathrm{~A} \quad 157.1 \mathrm{MHz}$
		7 W1 $\quad 162.55 \mathrm{MHz}$
		8 W2 162.4 MHz

Table 3-1. Controls, Indicators and Connectors (Continued)

FIGURE INDEX NO.	ITEM	FUNCTION
$\begin{aligned} & 3-1-5 \\ & \text { (Cont.) } \end{aligned}$		Position Switch Legend Channel Frequency
		$9 \quad-\quad$ Not used
		10 - Not used
		11 - Not used
		12 AM 121.5 MHz
3-1-6	1 ampere fuse Fl	Fuseholder and 1-ampere fuse. Protects direction finder from excessive current.
3-1-7	$\begin{aligned} & 115 \mathrm{~V} \text { ac } \\ & 1 \mathrm{~J} 1 \end{aligned}$	Connector. Input connector for 115 V ac power.
3-1-8	$\begin{aligned} & \text { MUTE } \\ & 1 J 4 \end{aligned}$	Connector. Input connector for mute control signal. The application of ground to this connector mutes audio circuits.
3-1-9	$\begin{aligned} & \text { TEST } \\ & 1 \mathrm{~J} 2 \end{aligned}$	Connector. Provides access to major signals for test purposes, as follows:
		Pin Signal A +15 VDC B^{*} Loudspeaker C * Audio D Gnd E ZCD (4.019 kHz Doppler) F ZCD (4.019 kHz Ref)
		* is jumpered inside Test 1 J 2
3-1-10	ANTENNA 1J3	Connector. Provides I/O connection for antenna interface cable.

(f) Rotate SQUELCH control in clockwise direction to the point at which receiver noise is no longer heard.
(g) Set RATE switch as desired. (RATE switch is normally set to FAST but may be set to SLOW in high seas for increased bearing acquisition stability.)
(h) Set MODE switch as desired.
(i) When a signal is heard the display will show the bearing of the signal source relative to the bow of the vessel.
(j) When no signal is received, the bearing display will show the bearing if the last signal received.
3.3.2 Monitor Mode Operation, - To operate the direction finder as an auxiliary receiver proceed as follows:
(a) Turn on direction finder as described in paragraph 3.3.1.
(b) Set RATE switch to Monitor position.
(c) The display will extinguish. All receiver functions are the same as in direction finder operation.

3.4 OPERATING CHECKS

The operator should perform one of the following tests prior to commencing maintenance on the unit. If the test indicates that the direction finder is malfunctioning, refer to section IV for maintenance procedures.
3.4.1 Operator's Test - In Port. - To verify the operation of the direction finder while in port, proceed as follows:
(a) Turn on direction finder as described in paragraph 3.3.1. Operate direction finder in DF mode.
(b) Set CHANNEL switch to receive transmissions from a known location (W1, W2, marine operator, etc.)
(c) Verify that displayed bearing approximates the known bearing of the transmitter.
(d) Set CHANNEL switch to receiver transmission from another known location. Verify that displayed bearing approximates the known bearing of the transmitter.
(e) Verify that VOLUME, SQUELCH, and DIMMER controls operate as described in table 3-1 and paragraph 3.3.1.
3.4.2 Operating Test-At Sea. - To verify the operation of the direction finder while at sea, proceed as follows:
(a) Turn on direction finder as described in paragraph 3.3.1. Operate direction finder in DF mode.
(b) Set CHANNEL switch to receive transmissions from a known location (W1, W2, marine operator, etc.)
(c) Verify that bearing approximates the known bearing of the transmitter.
(d) Change the vessel's course and verify that the displayed bearing changes by an amount equal to the course change.
(e) Verify that the VOLUME, SQUELCH, and DIMMER controls function as described in table 5-1 and paragraph 3.3.1.

SECTION IV - MAINTENANCE

4.1 INTRODUCTION

This section contains a preventive maintenance schedule, performance tests, adjustment procedures, and troubleshooting information for the direction finder. The preventive maintenance schedule is intended to improve the reliability of the direction finder and should be carried out at the intervals stated. The performance tests determine whether the direction finder is operating within its listed specifications. The adjustment procedures are provided to help maintain the direction finder within its specifications. The troubleshooting information is intended to aid in locating and correcting direction finder malfunctions.

4.2 RECOMMENDED TEST EQUIPMENT

Test equipment required for performance of test procedures, adjustment procedures, and troubleshooting is listed in table 4-1. Any equipment that satisfies the specifications given may be substituted for the recommended model.

4.3 PREVENTIVE MAINTENANCE

A good preventive maintenance schedule will result in greater direction finder reliability. A visual inspection of the units comprising the direction finder are the first step in the operation. Inspect the units for corrosion, dirt, moisture, and loose or binding connectors. Inspect the cables for wear or signs of stress. Table 4-2 details recommended preventive maintenance operations and the suggested time interval between the operations.

Table 4-1. Recommended Test Equipment

INSTRUMENT TYPE	RECOMMENDED MODEL	REQUIRED SPECS
RF Signal Generator	Hewlett-Packard Model 8640B	120 to $163 \mathrm{MHz}, \mathrm{AM}, \mathrm{FM}$ modulation
Distortion Analyzer/ Voltmeter	Hewlett-Packard Model 334A	With 1 kHz (or tunable notch filter - voltmeter)
Isolator	Intech 8301-0088	Capacitor Coupling
Frequency Counter	Hewlett-Packard Model 5382A	20 MHz or higher. High input impedance
Oscilloscope	Hewlett-Packard Model I80A	35 MHz or higher bandwidth
Digital Multimeter	Hewlett-Packard Model 3472A	$3-1 / 2$ digits, volts and ohms
Receiver/Display Test Set	Intech 8301-0081	4.019 kHz output with phase selectable in 45 degree steps
16-ohm Dummy Load	Intech 8301-0089	16 -ohm Load, Test Connector

Table 4-2. Preventive Maintenance Schedule

INTERVAL	PROCEDURE
Quarterly	1. \quad Check units for corrosion.
2.Inspect cables for outer jacket failure. 3. Inspect all receiver connections for corrosion, dirt, and broken pins.	
4.Inspect antenna coaxial connection for internal corrosion, water, and salt accumulation.	
	1.Inspect antenna for mechanical damage (breakage, corrosion, etc.). 2.Lubricate with contact cleaner front panel controls and switches.

4. 4 PERFORMANCE TESTS

Use the following procedures to determine if the direction finder is operating within specifications. The performance of the direction finder should be tested upon installation and at regular intervals thereafter. If the direction finder fails to meet one or more of the tests, refer to the adjustment procedures in the following paragraphs.

CAUTION

Hazardous voltages are exposed when the covers of the receiver unit are removed and power is applied.

NOTE

Plus 15 V dc is present on antenna connector. Use Isolator Intech $8301-0088$ to protect equipment connected to antenna input.
4.4.1 Power Supply Test. - The test operation of the power supply, proceed as follows:
(a) Connect receiver to primary power source.
(b) Remove top cover from receiver unit.

CAUTION

Do not touch any components when power is connected to receiver as 115 V ac is present. Failure to heed this warning may result in serious or fatal injury.
(c) Connect positive lead of voltmeter to A2TP1 (Red) and negative lead to any black TP. Check that reading is 21.6 to 26.4 volts dc, with 115 V ac applied.
(d) Move positive lead to A2TP2 (Green). Check that reading is 13.5 to 16.5 volts dc.
4.4.2 Frequency Test. - To test tuning of the receiver unit, proceed as follows:
(a) At A6TP3 (Brown), check for frequency of $446.250 \mathrm{kHz} \pm 10 \mathrm{~Hz}$. If indication is out of tolerance, refer to paragraph 4.5.1 for tuning instructions.
(b) At A8TP1 (White), check for frequency of $1.4468 \quad \mathrm{MHz} \pm 10 \mathrm{~Hz}$. If indication is out of tolerance, refer to paragraph 4.5.1 for tuning instructions.
(c) At A4TP1 (White), check for frequency of $17.346250 \mathrm{MHz} \pm 10 \mathrm{~Hz}$. If indication is out of tolerance, refer to paragraph 4.5.1 for tuning instructions.
(d) At A3TP1 (White), check for frequency of $17.346250 \mathrm{MHz} \pm 10 \mathrm{~Hz}$. If indication is out of tolerance, refer to paragraph 4.5.1 for tuning instructions.
(e) Connect test equipment to receiver as shown in figure 4-1.
(f) Set CHANNEL switch to 06 .
(g) At A6TP4 (Orange), check for $7.5 \pm 0.5 \mathrm{~V}$. Set CHANNEL switch to remaining $\mathbf{F M}$ channels and check for $7.5 \pm 0.5 \mathrm{~V}$ at A6TP4 (Orange) for each of the FM channels. If any indication is out of tolerance, refer to paragraph 4.5.1 for tuning instructions.
(h) Set CHANNEL switch to AM.

Figure 4-1. Frequency Test Setup
(i) Change rf signal generator frequency to 121.500 MHz .
(j) At A6TP5 (Yellow), check for $7.0 \pm 0.5 \mathrm{~V}$. If the indication is out of tolerance, refer to paragraph 4.5.1 for tuning instructions.
4.4.3 Sensitivity (12 dB SINAD) Test. - To perform this test, proceed as follows:
(a) Connect test equipment to receiver unit, as shown in figure 4-2.
(b) Set signal generator controls as follows:

Frequency:	156.300 MHz
Modulation Frequency:	1 kHz
FM Deviation	3.0 kHz
Output level:	1 mV

(c) Set receiver unit controls as follows:

CHANNEL Switch: 06
SQUELCH Control: Fully CCW, pulled out (monitor mode)
(d) Adjust VOLUME control for $6.35 \mathrm{~V} \mathrm{rms} / 16$ ohms (2.5 watts) on the distortion analyzer (in voltmeter mode).

Figure 4-2. Sensitivity Check Test Setup
(e) Reduce signal generator output level until SINAD is 12 dB . Minimum specification is $0.5 \mu \mathrm{~V}$ for 12 dB SINDAD.
(f) Measure the sensitivity of the remainder of the FM channels.
(g) Set signal generator controls as follows:

Frequency:	$121,500 \mathrm{MHz}$
Modulation Frequency:	1 kHz
AM Modulation:	30 percent
Output Level:	1 mV

(h) Set CHANNEL switch to AM.
(i) Adjust VOLUME control for $6.35 \mathrm{~V} \mathrm{rms} / 16 \mathrm{ohms}$ (2.5 watts) on the distortion analyzer (in Voltmeter mode).
(j) Reduce signal generator level until SINAD is 10 dB . Minimum specification is $1.0 \mu \mathrm{~V}$ for 10 dB SINAD.
4.4.4 Audio Power Output Test. - To perform this test, proceed as follows:

FM:
(a) Connect test equipment to receiver unit as shown in figure 4-2 and set receiver controls as specified in paragraph 4.4.3.c.
(b) Set rf signal generator output level to 1 mV , rms.
(c) Adjust VOLUME control for $6.35 \mathrm{~V} \mathrm{rms} / 16$ ohms (2.5 watts) on the distortion analyzer (in voltmeter mode).
(d) Measure distortion of audio output. Ensure that it is 10 percent or less.

AM:
(e) Set receiver controls as follows:

CHANNE L Switch:	AM
SQUELCH Control:	Fully CCW

(f) Repeat (b), (c), and (d).
4.4.5 Squelch Threshold Sensitivity Test. - To perform this test, proceed as follows:
(a) Connect test equipment to receiver unit as shown in figure 4-2.
(b) Set CHANNEL switch to 06 and set signal generator frequency to 156.300 MHz .
(c) Reduce rf output of signal generator to zero.
(d) Adjust SQUELCH control fully CCW, then adjust squelch control until receiver noise is no longer heard.
(e) Increase rf output of signal generator until receiver noise is again heard.
(f) Read rf signal level of signal generator. Minimum specification is 0.5 microvolts.
(g) Set CHANNEL switch to AM and set signal generator frequency to 121.500 MHz .
(h) Repeat (c), (d), (e), and (f).
4.4.6 AGC Threshold Test. - To perform the AGC threshold check, proceed as follows:
(a) Connect test equioment to receiver as shown in figure 4-3.
(b) Set CHANNEL switch to 06 and set rf signal generator for 156.300 MHz .

Figure 4-3. AGC Threshold Test Setup
(c) At A3TP4 (Green), check for $6.5 \pm 0.5 \mathrm{~V}$. If indication is out of tolerance refer to paragraph 4.5.2 for adjustment instructions.
(d) Set CHANNEL switch to AM and set rf signal generator frequency to 121.500 MHz .
(e) At A4TP4 (Green), check for $6.5 \pm 0.5 \mathrm{~V}$. If indication is out of tolerance refer to paragraph 4.5.2 for adjustment instructions.
4.4.7 Antenna Drive Level Test. - To perform this check proceed as follows:
(a) Connect test equipment to receiver as shown in figure 4-4.
(b) Measure dc voltage with digital multimeter connected directly on the antenna connector (coax center conductor). Specified voltage is $15.0 \pm 0.5 \mathrm{~V}$ dc.
(c) Measure signal level with distortion analyzer (connected as a voltmeter). Minimum specification is $0.8 \mathrm{~V} \mathrm{rms} \pm 0.02 \mathrm{~V} \mathrm{rms} .\mathrm{If} \mathrm{the} \mathrm{indication} \mathrm{is} \mathrm{out} \mathrm{of} \mathrm{tolerance}$, refer to paragraph 4.5.3 for adjustment instructions.
(d) Check distortion with the distortion analyzer. Distortion should be less than 10 percent.

Figure 4-4. Antenna Drive Level Test Setup
4.4.8 Receiver DF Accuracy Test. - To perform this test, proceed as follows:
(a) Connect test equipment to receiver as shown in figure 4-5.
(b) Set CHANNEL switch to 06 and set rf signal generator frequency to 156.300 MHz and adjust deviation to $\pm 500 \mathrm{~Hz}$.
(c) Set Receiver Display Test Set to switch position 1. Read and record the bearing.
(d) Set Receiver Display Test Set to switch position 2. Read and record the bearing.
(e) Continue to read and record the bearing in all switch positions of the Receiver Display Test Set including a final reading in position 1.
(f) If the beginning and the final reading in switch position 1 on the Receiver Display Test Set is identical, use this reading as a reference to calculate the errors. If the readings are different, use the average value of the two readings. The minimum specification is ± 1 degree error in all positions with respect to the reference.
4.4.9 System DF Accuracy Test.- When performing this test, make sure that the antenna is far away from large objects. Best results are obtained when the test is performed at sea with the transmitting source at a distance but in line of sight. Proceed as follows:
(a) Select a transmitting source in a known location (e.g., W1, W2, e.g.)
(b) Set the CHANNEL switch to the desired channel.
(c) Set MODE switch to select DF mode and observe the displayed bearing.

Minimum specification is ± 3 degrees from the known bearing. If the indication is out of tolerance, refer to paragraph 4.5.4 for tuning instructions.

FM: FREQ: 156.300 MHz LEVEL: 1 MV

AM: FREQ: 121.500 MHz LEVEL: 1MV

Figure 4-5. Receiver DF Accuracy Test Setup

4.5 ADJUSTMENTS

The following paragraphs provide adjustment procedures to return the direction finder to peak operating condition when alignment is required or following repair action. Adjustment controls are shown in figure 4-6 and test points are shown in figure 4-7. Refer to paragraph 4. 6 for troubleshooting information. Schematics, a receiver wiring diagram, and other maintenance related data are provided in section VII of this manual.

CAUTION

Hazardous voltages are exposed when the covers of the receiver are removed and ac power is connected.
4.5.1 Oscillator Frequency Adjustments. - To adjust crystal oscillators, proceed as follows:
(a) With dc power removed (OFF), place card 1A6 on the extender card.
(b) Set up test equipment as shown in figure 4-1 and apply de power (ON).
(c) Adjust 1A6C51 for frequency indication of $446.250 \mathrm{kHz} \pm 10 \mathrm{~Hz}$ at 1A6TP3.
(d) Connect counter to 1A8TP1 (White).
(e) Adjust 1 A 8 C 3 for frequency indication of $1.446800 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ at 1 A 8 TP 1 .
(f) Connect counter to 1A4TP1 (White).
(g) Adjust 1A4C31 for frequency indication of $17.346250 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ at 1 A 4 TP 1 .
(h) Connect counter to 1A3TP1 (White).
(i) Adjust 1 A 3 C 1 for frequency indication of $17.346250 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ at 1 A 3 TP 1 .
(j) Set the CHANNEL switch to the channel to be adjusted and the rf signal generator to the channe1 freauency.
(k) Set CHANNEL switch to 06 and set rf signal generator to 156.3 MHz .
(l) Adjust 1 A 6 C 1 for $7.5 \pm 0.5 \mathrm{~V}$ at 1 A 6 TP 4 (Orange). (Refer to figure 7-7 for location of 1 A 6 C 1 .)
(m) Repeat steps (k) and (l) while selecting each FM channel and tuning the rf signal generator to the frequency of the selected channel. Adjust the applicable trimmer capacitors

Figure 4-6. Receiver Adjustment Controls

Figure 4-7. Receiver Test Points
for $7.5 \pm 0.5 \mathrm{~V}$ at 1 A 6 TP 4 (Orange) when each channel is selected (Refer to figure 7-7 for the locations of trimmer capacitors.) The channels, frequencies, and trimmer capacitors are:

Channel	Frequency	Capacitor
06	156.30	1 A 6 C 1
12	156.60	1 A 6 C 2
13	156.65	1 A 6 C 3
14	156.70	1 A 6 C 4
16	156.80	1 A 6 C 5
22 A	157.10	1 A 6 C 6
W1	162.55	1 A 6 C 7
W2	162.40	1 A 6 C 8

(n) Set CHANNEL switch to AM and set rf signal generator to 121.5 MHz .
(o) Adjust 1A6C12 for $7.0 \pm 0.5 \mathrm{~V}$ at 1 A 6 TP 5 (Yellow). (Refer to figure 7-1 for location of 1 A 6 C 12 .)

NOTE

Remove dc power before removing extender card.
4.5.2 AGC Threshold Adjustment. - To adjust AGC threshold, proceed as follows:
(a) Set up test equipment as shown in figure 4-3.
(b) For FM channels, check for $6.5 \pm 0.5 \mathrm{~V}$ at 1 A 3 TP 4 (Green). Adjust 1 A 3 R 28 for correct level at 1A3TP4.

NOTE

A time delay between the potentiometer adjustment and the resulting voltage indication change make this adjustment somewhat time consuming.
(c) For AM channels, check for $6.5 \pm 0.5 \mathrm{~V}$ at 1 A 4 TP 4 (Green). Adjust 1 A 4 R 28 for correct level at 1A4TP4.

NOTE

A time delay between the potetiometer adjustment and the resulting voltage indication change make this adjustment somewhat time consuming.
4.5.3 Antenna Drive Level Adjustment.- To perform this adjustment, proceed as follow:.
(a) Connect test equipment to receiver as shown in figure 4-t.
(b) Check signal level with distortion analyzer (connected as a voltmeter). Signal level should be 0.8 V rms. Adjust 1 A 7 R 54 for $0.8 \pm 0.02 \mathrm{~V} \mathrm{rms}$.
4.5.4 System DF Accuracy Adjustment. - To perform this adjustment, proceed as follows:
(a) Select a transmitting source in a known location, (Wl, W'2, e.g.)
(b) Set the CHANNEL switch to the desired channel.
(c) Set MODE switch to select DF mode and observe the displayed bearing.
(d) The bearing should be ± 3 degrees from the correct relative bearing value. If required, adjust the bearing indication as follows:

NOTE

Before performing the bearing adjustment, a quick inspection of the antenna is recommended to verify that it has not shifted position.
(e) For FM channels, adjust potentiometer 1A8R33 to obtain correct bearing indication.
(f) For AM channels, adjust potentiometer 1A8R32 (1) wil ain correct bearing indication.

NOTE

1. Know the location of vessel and transmitting source $;$ that an accurate reference bearing can be determined with ± 3 degrees.
2. No obstructions within 100 meters or more (no tall building, masts, etc.)
3. Open water is preferred.
4.5.5 Other Adjustments. - There are no other adjustments that can be performed in the field. All other adjustments must be performed in a service depot using the proper test equipment, test fixtures, etc. Accidental adjustment of non-field adjustable components will necessitate the replacement of the board containing those components.

4. 6 TROUBLESHOOTING

Successful troubleshooting is aided by an understanding of the theory of operation and by an understanding of the use of the controls and indicators. Refer to Section lfor operating
principles and theory of operation. Refer to Section III for a description of controls and indicators and for operating instructions.

If trouble is suspected, visually inspect the receiver unit and the antenna unit. Check for loose cables, burnt components, and a blown fuse. Verify that all printed circuit boards are making good contact and are not shorting to an adjacent shield. If no obvious trouble is located, check the $115-\mathrm{V}$ ac power.
4.6.1 Initial Troubleshooting Procedure. - Before troubleshooting the direction finder in an attempt to locate a defective circuit board, ensure that none of the conditions listed in table 4-3 exist.

Table 4-3. Initial Symptom-Cause Checks

SYMPTOM	PROBABLE CAUSE
Receiver does not turn on.	Defective fuse 1F1
No Audio, No Squelch.	1. Coax cable defective, or connections loose.
	2. MUTE connector shorted to ground.
	$3 . \quad$ Power supply defective.

4.6.2 DC Voltages and Waveforms. - Receiver test point voltages and waveforms, and the conditions for performing these measurements are given in table 4-4 and figure 4-8. respectively. The test points are identified in figure 4-4. Since the equipment control settings for making measurements may differ from one test point to another, note the measurement conditions given.
4.6.3 Trouble Diagnosis. - By the use of the front panel controls, together with the visual and audible response of the direction finder, determine as many details of the malfunctions as possible. Following this, consult the appropriate sheet of the troubleshooting flowcharts provided in figure 4-9 and follow the instructions given for isolating and correcting the malfunction. A receiver wiring diagram, schematics, and other circuit data is provided in Section VII.
Table 4-4. Receiver DC Test Point Voltages

TEST POINT	SIGNAL	RECEIVER CONTROL SETTINGS	RF SIGNAL INPUT	$\begin{gathered} \text { DC } \\ \text { VOLTAGE } \end{gathered}$	NOTES
1A2TP1	Unregulated DC power in		None	22 to 28 V dc	
1A2TP2	Regulated +15 V dc		None	$15.0 \mathrm{~V} \mathrm{dc} \pm 10 \%$	
1 A 3 TP4	AGC	CH 16,	See Note	$\begin{aligned} & \approx+7.5 \mathrm{~V} \mathrm{dc} \\ & \text { at no signal } \end{aligned}$	Decreases to 0 V dc as signal level increases.
1A4TP4	AGC	CH AM	See Note	$\approx+7.5 \mathrm{~V} \mathrm{dc}$ at no signal	Decreased to 0 V de as signal level decreases
1 A 3 CR 9 1 A 4 CR 9	AGC Indicator (LED) AGC Indicator (LED)	CH 16, homing mode	See Note See Note		Maximum brilliance at no signal. Dims as signal increases.
1A5TP2	Detected Squelch Noise	CH 16 or CH AM	See Note	$\begin{aligned} \approx & +2.5 \mathrm{~V} \mathrm{dc} \\ & +1.6 \mathrm{~V} \mathrm{dc} \end{aligned}$	No signal Strong signal not affected by squelch control
1A6TP2	Rectified LO output	CH 16 or CH AM	None	$\geqslant+2.0 \mathrm{~V} \mathrm{dc}$	Varies with LO output level.
1A6TP5	AM AFC	CH AM	$\begin{aligned} & 121.5 \mathrm{MHz}, \\ & 1 \mathrm{mV} \end{aligned}$	$\approx 7.0 \mathrm{~V} \mathrm{dc}$	Varies with signal generator frequency
$1 \mathrm{A6TP4}$	FM AFC	CH 16	$\begin{aligned} & 156.8 \mathrm{MHz}, \\ & 1 \mathrm{mV} \end{aligned}$	$\approx 7.5 \mathrm{Vdc}$	Varies with signal generator frequency
1A8TP2	Light dimmer		None	0 to 15 V dc	Varies with dimmer control setting

TEST POINT:
SIGNAL:

RF INPUT:
RECEIVER CONTROLS:

SCOPE SETTINGS:

COMMENT:

A3 TP1 OR A4 TP1
17.34625 MHz 2nd L.O.

NONE
CH 14 FOR A3 TP1 CH AM FOR A4 TP1

VERT- $0.05 \mathrm{~V} / \mathrm{div}, \mathrm{AC}$ HORIZ $-.05 \mu \mathrm{sec} / \mathrm{div}$

TYPICAL LEVEL SHOWN LEVEL CAN VARY AS MUCH AS 50\% FROM UNIT TO UNIT.

Figure 4-8. Receiver Test Point Waveforms

TEST POINT:
SIGNAL:

RF INPUT:

A3 TP2
UN-DEEMPHASIZED FM AUDIO

1 mV
156.700 MHz

1 kHz MODULATION, 3 kHz DEVIATION
RECEIVER CONTROLS:
SCOPE SETTINGS:

CH 14
VERT- $0.2 \mathrm{~V} / \mathrm{div}, \mathrm{AC}$ HORIZ- $0.2 \mathrm{msec} / \mathrm{div}$

Figure 4-8. Receiver Test Point Waveforms

TEST POINT:	A4 TP3
SIGNAL:	DEMODULATED AM AUDIO
RF INPUT:	1 mV
	1 KHz MODULATION
	$30 \% \mathrm{AM}$ MODULATION
	121.5 MHz
RECEIVER CONTROLS:	CH AM
SCOPE SETTINGS:	
	VERT-.05V/div, AC
	HORIZ-.2 msec/div
COMMENT:	
	LEVEL CAN VARY CONSIDERABLEY

Figure 4-8. Receiver Test Point Waveforms

Figure 4-8. Receiver Test Point Waveforms

A7 TP3

 REFERENCEA7 TP2 ANTENNA DRIVE

TOP TRACE

A7 TP3
REFERENCE

NONE

DF
VERT-5V/div DC HORIZ- $50 \mu \mathrm{~s} / \mathrm{div}$

NOTE PHASE RELATIONSHIP

BO7TOM TRACE

A7 TP2 ANTENNA DRIVE NONE

DF
VERT-1V/div AC HORIZ-- $50 \mu \mathrm{~s} / \mathrm{div}$

COMMENT:

Figure 4-8. Receiver Test Point Waveforms

	TOP TRACE	BOTTOM TRACE
TEST POINT: SIGNAL:	A7 TP3 REFERENCE	A7 TP4 ZCD (ZERO CROSSING DETECTOR)
iR	1 MV	
	156.7004 MHZ 4.01 9 KHz FM MIODULATION AT 500 Hz DEVIATION FROM TEST BOX NO. 8301.0081 OR RECEIVED SIGNAL FROM ANTENNA (W1 OR W2)	SAME
RECEIVER CONTROLS:	$\begin{aligned} & \text { DF } \\ & \text { CH } 14, \text { W1 OR W2 } \end{aligned}$	SAME
SCOPE SETTINGS:	VERT-5V/div DC HORIZ- $50 \mu \mathrm{~s} / \mathrm{div}$	SAME
COMMENT:	PHASE RELATIONSHIP DETERMINES BEARING. PHASE SHIFT (BEARING) SHOWN IS 260° DUTY CYCLE MUST BE 50\%	

Figure 4-8. Receiver Test Point Waveforms

TOP TRACE

A7 TP4
ZCD

1MV

156.700 MHZ
4.019 KHZ FM MODULATION AT 500 HZ

DEVIATION FROM TEST BOX NO.8301-0081
OR RECEIVED SIGNAL FROM ANTENNA
(W1 OR W2)

BOTTOM TRACE

A7 TP1
DEMODULATED DOPPLER 4KHZ

SAME

.2V/DIV AC
$50 \mu \mathrm{~S} / \mathrm{DIV}$

FIGURE 4-8. RECEIVER TEST POINT WAVEFORMS

TEST POINT:

A8 TP1
SIGNAL: $\quad 1.44680 \mathrm{MHZ}$
RF INPUT: NONE
RECEIVER CONTROLS: DF
SCOPE SETTINGS: VERT-.2V/div AC 10:1 PROBE HORIZ- $0.2 \mu \mathrm{~s} / \mathrm{div}$

Figure 4-8. Receiver Test Point Waveforms


```
TEST POINT:
SIGNAL:
RF INPUT:
RECEIVER CONTROLS: DF
SCOPE SETTINGS: VERT-1V/div AC
    HORIZ-50 \mu s/div
COMMENT: DC VOLTAGE VARIES 0 - 15 VDC WITH
    POSITION OF DIMMER CONTROL
```

Figure 4-8. Receiver Test Point Waveforms

TEST POINT:
SIGNAL:

RF INPUT:
RECEIVER CONTROLS'
SCOPE SETTINGS:

COMMENT:

A5 TP1
SQUELCH FILTER OUT PUT

NONE
CH 14 OR CH AM
VERT-2V/div, AC HORIZ- $0.1 \mathrm{msec} / \mathrm{div}$

LEVEL CAN VARY SOME FROM UNIT TO UNIT

Figure 4-8. Receiver Test Point Wavefomrs

TEST POINT:
 SPEAKER AUDIO

```
RF INPUT:
1MV
156.700 MHZ
1 KHZ MODULATION, 3 KHZ DEVIATION
```

RECEIVER CONTROLS: CH 14
SQUELCH CONTROL FULLY CW, VOLUME CONTROL MID-POSITION

SCOPE SETTINGS: VERT-0.2V/DIV HORIZ-0.2MSEC/DIV

Figure 4-8. Receiver Test Point Waveforms

TEST POINT: SIGNAL:

RF INPUT:

RECEIVER CONTROLS:
SCOPE SETTINGS:

A6 TP1
CRYSTAL OSCILLATOR

NONE
ANY CHANNNEL
VERT-0.1V/div AC HORIZ-- $0.05 \mu \mathrm{sec} / \mathrm{div}$

Figure 4-8. Receiver Test Point Waveforms

Figure 4-9. Direction Finder Troubleshooting Flowehart (Sheet 1 of 5)
 CONNECTORS FOR DAMAGE. IF MALFUNCTION REMAINS, CHECK COAXIAL CABLE FOR SHORTS WITH VOM. IF MALFUNCTION REMAINS, REPLACE ANTENNA. (BE SURE THIS IS THE CAUSE BEFORE ATTEMPTING REPLACEMENT).

Figure 4-9. Direction Finder Troubleshooting Flowchart (Sheet 2 of 5)

Figure 4-9. Direction Finder Troubleshooting Flowchart (Sheet 3 of 5)

Figure 4-9. Direction Finder Troubleshooting Flowchart (Sheet 4 of 5)

Figure 4-9. Direction Finder Troubleshooting Flowchart (Sheet 5 of 5)

5.1 INTRODUCTION

This section contains listings for all replaceable parts for the homer. Tables 5-1 through 5-3 list parts in alphanumeric order by reference designation for the receiver unit and antenna unit respectively. The tables provide the following information:
(a) REF. DESIG. The reference designation for each replaceable part.
(b) DESCRIPTION. The description for each replaceable part.
(c) MFR. CODE. Manufacturer's Federal Supply Code Number. Refer to Table 5-3 for manufacturer's name and address.
(d) MFR. PART NO. Manufacturer's part number for replaceable part.

Table 5-1. Receiver Unit 1 Parts List

Table 5-1. Receiver Unit 1 Parts List
(Continued)

Table 5-1. Receiver Un it 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
XA7C	... SAME AS XA2A		
XA8A	...SAME AS XA64		
XA8B	...CONNECTOR	54453	
XDS 1	...LED SOCKET ASSY	52072	CA-S-16M0-00- 261-T0-012
XDS2	... SAME AS XDS1		
XDS3	...SAME AS XDS 1		
XF1	...FUSE HOLDER	75915	342022
XJ1	...CAP, POWER	02660	9760-10 $9760-14$
XJ2CAP, TEST	02660	9760-14
XJ3	.CAP, BNC	81349	CW-123A/W
XR1	. . . INSERT	33967	55157544
$P C-1$...PC CARD EXTENDER ASSEMBLY	33967	91157546
W1	...POWER CABLE ASSEMBLY	33967	91157223

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1 13	- CIRCUIT CARD ASSY, RECEIVER $156-163 \mathrm{MHz}$	33967	91157448
1A3MP	- PRRINTED WIRING BOARD	33967	23157448
C1	\cdots CAFACITOR, FIXED, . $001 \mu \mathrm{~F}$	22701	10080047
C2	\cdots - CAPACITOR, FIXED, 330PF	22701	10080040
C3	\cdots - SAME AS C1	22701	
C4	\cdots - CAPACITOR, FIXED, 5PF		10080011
C5	\cdots CAPACITOR, FIXED, IPF	22701	10080001
C6	\cdots CAPACITOR, FIXED, 22PF	22701	10080020
C7	\cdots - CAPACITOR, FIXED, 10PF	22701	10080015
C8	\cdots..CAPACITOR, FIXED, 8.2PF	22701	10080014
C9	\cdots - SAME AS C1		
C10	\cdots - SAME AS C2		
C11	\cdots...SAME AS C1		
C12	\cdots - SAME AS C1		
C13	\cdots - SAME AS C5		
C14	\cdots - SAME AS C7		
C15	\cdots - SAME AS C8		
C16	\cdots SAME AS C8		
C17	\cdots - SAME AS C1		
C18	\cdots - SAME AS C5		
C19	\cdots - SAME AS C7		
C20	\cdots - SAME AS $\mathrm{C7}$		
C21	\cdots SAME AS $\mathrm{C7}$		
C22	\cdots - SAME AS C1		
C23	\cdots CAPACITOR, FIXED, . $1 \mu \mathrm{~F}$ - . SAME AS C1	52763	MKT-1819-410/0
C25	\cdots..CAPACITOR, FIXED, 82PF	04062	DM1 5-820J
C26	\cdots - ${ }^{\text {- SAME AS }}$ Cl		
C27	- \cdots. ${ }^{\text {C. }}$ CAPACACITOR, FIXED, 200PF	04062 04062	$\begin{aligned} & \text { DM15-201 J } \\ & \text { DM15-471 J } \end{aligned}$
C28 C29	-•CAPACITOR, FIXED, 470PF - . SAME AS C28	04062	DM15-471J
C30			
C31	\cdots - CAPACITOR, VARIABLE, 5.5-18PF	52763	$\begin{aligned} & \text { 10S-TR1K0-22-N } \\ & 003 \end{aligned}$
C32 C33	- . SAME AS C6 …CAPACITOR, FIXED, . 047μ F	51642	200-050-651-473M
C34	- . SAME AS C23		
C35	\cdots - SAME AS C28		
C36	$\cdots \cdots$. ${ }^{\text {deLETED }}$		
C37	- - SAME AS C6		
C38	\cdots - SAME AS CI		
C39	$\cdots \mathrm{CAPACITOR}, \mathrm{FIXED}, .047 \mu \mathrm{~F}$	52783	MKT-1819-347/0

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1 A 3		04062	DM-15-111F
C42	\cdots.. SAME AS C33		
C43	\cdots - SAME AS C 39		
C44	\cdots - SAME AS C40		
C45	\cdots - SAME AS C31		
C46	\cdots SAME AS C39		
C47	\cdots - SAME AS C28		
C48	\cdots - SAME AS C23	31433	T368C106M035AS
C49	CAPACITOR, FIXED, 10μ, 3SV		
C50	\cdots CAPACITOR, FIXED, $1 \mu \mathrm{~F}, 25 \mathrm{~V}$	31433	T368A105M025AS
C51	\cdots CAPACITOR, FIXED, . $01 \mu \mathrm{~F}$	22701	10080055
C52	\cdots - SAME AS C51		
C53	\cdots SAME AS C33		
C54	\cdots - SAME AS C49		
C55	... SAME AS C39		
C56	\cdots...CAPACITOR, FIXED, 0056 , F	55112	MKT-160/0056K1 00C
C57	\cdots - SAME AS C39		
C58	\cdots - SAME AS C39		
C59	\cdots - ${ }^{\text {SAME AS }}$ C23		
C60	\cdots - SAME AS C51		
C61	\cdots - SAME AS C49		
C62	\cdots - SAME AS C49		
C63	\cdots - SAME AS C49		
C64	\cdots - SAME AS Cl		
C65	\cdots... SAME AS C39		
C66	\cdots - SAME AS C1		
C67	\cdots-..CAPACITOR, FIXED, . 015 ¢ F	52763	:MKT-1819-315/06
C68	$\begin{aligned} & \cdots \text { SAME AS Cl } \\ & \cdots \text { SAME AS C4 } \end{aligned}$		
C69	\cdots... SAME AS C4		
C70	\cdots SAME AS C67		
C71	\cdots SAME AS C4		
C72	\cdots SAME AS C1		
C73	- . SAME AS C67 ...CAPACITOR FIXED 360PF		
C74	\cdots - CAPACITOR, FIXED, 360PF	04062	DM15-367J
C75	-• SAME AS C23 ... DIODE, 1 N4148	81349	1N4148
CR2	\cdots - SAME AS CR1		
CR3	\cdots SAME AS CRI		
CR4	\cdots - SAME AS CR1		

Table 5-1. Receiver Unit 1 Parts List (Continued)

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1 A3			
R16	. . SAME AS R4		
R17	... SAME AS R4		
R18	...RESISTOR, FIXED, 620Ω, 1/4W, 5\%	09021	CF1/4-620 2 , 5\%
R19	...SAME AS R10		CFI/4-33, 5\%
R20	\ldots...RESISTOR, FIXED, $33 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	09020	CF1/4-33 , 5\%
R21	. . . DELETED		
R22	\ldots...RESISTOR, FIXED, $1 \mathrm{~K}, 1 / 8 \mathrm{~W}, 5 \%$	81349	RC05S 102 J
R23	...SAME AS R3		
R24 R25	\ldots...RESISTOR, FIXED, $820 \Omega, 1 / 4 \mathrm{~W}, 5 \%$ SAME AS R22	02021	CF1/4-820 2 , 5\%
R26	...RESISTOR, FIXED, $56 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-56 2 , 5\%
R27	\ldots...RESISTOR, FIXED, $68 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-68 Ω, 5\%
R28	...RESISTOR, VARIABLE, 2K	73138	72XR2K
R29	...SAME AS R4		
R30	... SAME AS R4		
R31	...RESISTOR, FIXED, 9.1K, 1/4W, 5\%	09021	CFI/4-9.1K, 5\%
R32	...SAME AS R1		
R33	...SAME AS R7		
R34	...RESISTOR, FIXED,1M, 1/4W, 5\% ...SAME AS R7	09021	CFI/4-1M, 5\%
R36RESISTOR, FIXED, $2.2 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-2.2K, 5\%
R37	...SAME AS R10		
R38	... SAME AS R7		
R39	...SAME AS R7		
R40	...SAME AS R4		
R41	...RESISTOR, FIXED, 33K, $1 / 4 \mathrm{~W}, 5 \%$	09021	
R42	...RESISTOR, FIXED, 15K, 1/4W, 5\%	09021	CFI/4-15K, 5\% $105-0751-001$
TP1	...TEST POINT, WHITE	74970	105-0751-001
TP2	...TEST POINT, BROWN	74970	105-0758-001
TP3	...TEST POINT, RED	74970	105-0752-001
TP4	...TEST POINT, GREEN	74970	
TP5	...TEST POINT, BLACK	74970	106-0753-001
TP6	...TEST POINT	00779	60802-2
TP7	...SAME AS TP6		
U1	...MICROCIRCUIT, μ A21360C	07263	$\mu \mathrm{A} 2136 \mathrm{DC}$
U2	... SAME AS UT		
U3	... SAME AS U1		
U4	. . . MICROCIRCUIT, RCI558T	07933	RC1558T
Y1 MPQ5	\ldots...CRYSTAL, 17.34625MHZ	$\begin{aligned} & 00809 \\ & 02114 \end{aligned}$	$\begin{aligned} & 16180206 \\ & 56690-65 / 4 \mathrm{~A} \end{aligned}$

Table 5-1. Receiver Unit 1 Parts List (Continued)

Table 5-1. Receiver Unit 1 Parts List (Continued)

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
144 C39	$\begin{aligned} & \cdots \text { CAPACITOR, FIXED, } 047 \mu \text { F } \\ & \cdots \text { CAPACITOR, FIXED, } 110 \text { PF, } 1 \% \\ & \cdots \text { SAME AS C } 31 \\ & \cdots \text { SAME AS C } 33 \\ & \cdots \text { SAME AS C } 39 \end{aligned}$	$\begin{aligned} & 52763 \\ & 04062 \end{aligned}$	$\begin{aligned} & \text { MKT-1819-347/0 } \\ & \text { DM15-111F } \end{aligned}$
C40			
C41			
C42			
C43			
C44	\cdots - SAME AS C40		
C45	\cdots SAME AS C31		
C46	\cdots - SAME AS C39		
C47	\cdots - SAME AS C28		
C48	\cdots - SAME AS C23		
C49	\cdots CAPACITOR, FIXED, $10 \mu \mathrm{~F}, 35 \mathrm{~V}$	31433	T368C106M035AS
C50		31433	T368A105M025AS
C51	\cdots CAPACITOR, FIXED, . $01 \mu \mathrm{~F}$	22701	10080055
C52	\cdots SAME AS C51		
C53	-. SAME AS C33		
C54	\cdots... SAME AS C 49		
C55	\cdots - SAME AS C39		
C56	\cdots CAPACITOR, FIXED, . $0056 \mu \mathrm{~F}$	55112	MKT-160/0056K1000
C57	- . SAME AS C39		
C58	\cdots - SAME AS C39		
C59	\cdots - SAME AS C23		
C60	\cdots - SAME AS C51		
C61	\cdots - SAME AS C49		
C62	\cdots. SAME AS C49		
C63	\cdots - SAME AS C49		
C64	\cdots - SAME AS CI		
C65	\cdots SAME AS C39		
C66	…SAME AS C1	52763	MKT-1819-315/0
C67	\cdots SAME AS CI		
C69	\cdots - SAME AS C4		
C70	$\cdots \cdots$ SAME AS C67		
C71			
C72	$\cdots$$\cdots$$\cdots$SAME ASSAMEASC67		
C73			
	\cdots CAPACITOR, FIXED, 360PF	04062	DM15-361J
C75	\cdots - SAME AS C23		
CR1	\cdots - DIODE, 1 N4148	81349	1N4148
CR2	\cdots. SAME AS CR1 -•SAME AS CR1		
CR3			

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A4			
CR4	\cdots - SAME AS CRI		
CR5	\cdots - SAME AS CR1		
CR6	\cdots - SAME AS CRI		
CR7	- ... DELETED		
CR8	\cdots - SAME AS CRI		
CR9	- diode, light emitting	72619	550-0103
CR10	- SAME AS CRI		
CR11	\cdots. SAME AS CRI		
El	\cdots	55210	L-2007-1
FLI	\cdots - CRYSTAL FILTER	25120	1457
L1	\cdots - INDUCTOR, FIXED, $31 / 4 T$	23880	12255
L2	\cdots - SAME AS L1		
L3	\cdots SAME AS L1		
L4	\cdots...SAME AS L1		
L5	\cdots.. SAME AS L1		
L6	... SAME AS LI		
L7	\cdots - INDUCTOR, FIXED, 17 1/4T	77630	51246
L8	\cdots - INDUCTOR, FIXED, 100 HY	99800	1026-68
L9	$\cdots \cdots$ INDUCTOR, FIXED, 1 MHY	99800	1025-92
L10	\cdots - SAME AS L8		
	... SAME AS L9 …TRANSISTOR, FIELD EFFECT, 40820		
Q1	…TRANSISTOR, FIELD EFFECT, 40820 -•解解E AS 01	02735	40820
Q3	- . TRANSISTOR, FIELD EFFECT, 40673	02735	40673
Q4	\cdots - TRANSISTOR, 2N2222	81349	2N2222
	\cdots SAME AS Q4 \cdots RESISTOR, FIXED, $100 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$		
R1	…RESISTOR, FIXED, 100K, 1/4W, 5\% ...SAME AS RI	09021	CF1/4-100K, 5\%
R3	\cdots - ${ }^{\text {PRESISTOR, FIXED, }} 270 \Omega, 1 / 4 W, 5 \%$	09021	$\text { CF1/4-270 } \Omega, 5 \%$
R4	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 10 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-10K, 5\%
R5	... SAME AS R4		
R6	…SAME AS R3		
R7	…RESISTOR, FIXED, 1K, 1/4W, 5\% \cdots...SAME AS R4	09021	CFI/4-1K, 5\%
R9	\cdots - SAME AS R7		
R10	\cdots - ${ }^{\text {RESISTOR, FIXED, } 100 \Omega, 1 / 4 W, 5 \% ~}$	09021	CF1/4-100 $2,5 \%$
R11	\cdots - SAME AS R7		
$\mathrm{R12}$	\cdots - SAME AS R10		
R13	\cdots SAME AS R3		
R14	\cdots - SAME AS R3		

Table 5-7. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1 A4			
R15	\cdots - SAME AS R7		
R16	\cdots - SAME AS R4		
R17	\cdots - SAME AS R4		
R18	\cdots...RESISTOR, FIXED, $1.91 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$ \cdots.	81349	RN55D911F
R19	\cdots - SAME AS R10		
R20	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 33 \Omega$, 1/4W, 5\%	09021	CFI/4-33, 5 ,
R21	\cdots - DELETED		
R22	\cdots - ${ }^{\text {RESISTOR, FIXED, } 1 \mathrm{~K}, 1 / 8 \mathrm{~W}, 5 \%}$	81349	RC05S102J
R23	\cdots SAME AS R3		
R24		09021	CF1/4-820 ${ }^{\text {, }} 5$
R25	\cdots SAME AS R22		
R26	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 56 \Omega, 1 / 4 W, 5 \%$	09021	CF1/4-56 $2,5 \%$
R27		09021	CF1/4-68 ${ }^{\text {, }} 5$
R28	\cdots - ${ }^{\text {RESISTOR, VARIABLE, }}$ 2K	73138	
R29	\cdots SAME AS R4		
R30	\cdots - SAME AS R4		
R31	\cdots - ${ }^{\text {- }}$ SESISTOR, FIXED, $9.1 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-9.7K, 5\%
R32	\cdots. SAME AS R1		
R33	\cdots - SAME AS R7		
R34	\cdots - ${ }^{\text {RESISTSTOR, FIXED, }} 1 \mathrm{M}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-1M, 5\%
R35	$\cdots{ }^{\cdots} \cdot{ }^{\text {S SAME AS R7 }}$		
R36	$\cdots \cdots \mathrm{CRSISTOR}$, FIXED, $2.2 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-2.2K, 5\%
R39	\cdots - SAME AS R7		
R40	\cdots - SAME AS R4		
R41	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 33 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-33K, 5\%
R42	\cdots ?	09021	$\text { CFI } / 4-15 \mathrm{~K}, 5 \%$
TP1	…TEST POINT, WHITE	74970	$105-0751-001$
TP2	\cdots. ${ }^{\text {TEST }}$ POINT, BROWN	74970	105-0758-001
TP3	\cdots - TEST POINT, RED	74970	105-0752-001
TP4	\cdots. TEST POINT, GREEN	74970	105-0754-001
TP5	\cdots. TEST POINT, BLACK	74970	105-0753-001
TP6	\cdots. TEST POINT	00779	60802-2
TP7	$\cdots \cdots$ SAME AS TP6		
U1	-...MICROCIRCUIT, μ A2136DC	07263	$\mu \mathrm{A} 2136 \mathrm{C}$
U2	\cdots - SAME AS UI		
U3	\cdots SAME AS UI		
U4	- - MICROCIRCUIT, RCI558T	07933	RC1558T
Y 1	- \cdot CRYSTAL, 17.34625MHZ	00809	16180206

Table 5-1. Receiver Unit 1 Parts List (Continued)

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1 15	- CIRCUIT CARD ASSY, AUDIO BOARD	33967	91157205
TA5MP]	\cdots - PRINTED WIRING BOARD	33967	23157205
C1	\cdots CAPACITOR, FIXED, 56PF	22701	10080028
C2	$\cdots \cdots$ CAPACITOR, FIXED, 220PF, 500V	04062	DM15-221J
C3	\cdots - SAME AS C2		
C4	\cdots CAPACITOR, FIXED, . 01μ F	22701	10080055
C5	\cdots CAPACITOR, FIXED, . $1 \mu \mathrm{~F}$	52763	MKT-1819-410/0
C6	\cdots CAPACITOR, FIXED, $10 \mu \mathrm{~F}, 35 \mathrm{~V}$	31433	T368C106M035AS
C7	\cdots - CAPACITOR, FIXED, $4.7 \mu \mathrm{~F}, 10 \mathrm{~V}$	52763	ETP1 4.7/10
C8	\cdots..CAPACITOR, FIXED, 470PF	22701	10080042
C9	...SAME AS C4		
C10	…CAPACITOR, FIXED, 47 V , 6V	56289	196D476X9006JA1
C11	\cdots - - CAPACITOR, FIXED, $100 \mu \mathrm{~F}, 16 \mathrm{~V}$	52763	EK 100/16
C12 C13	…CAPACITOR, FIXED, . $001 \mu \mathrm{~F}$ -• SAME AS C5	22701	10080047
C14	\cdots..CAPACITOR, FIXED, 330PF	22701	10080040
C15	\cdots - CAPACITOR, FIXED, $100 \mu \mathrm{~F}$, 40V	22701	EK 100/40
C16	\cdots SAME AS C15		
C17	\cdots SAME AS C5		
CR1	$\cdots{ }^{\text {- }}$ DIODE, 1N960B	81349	1N960B
CR2	\cdots - DIODE, 1N4148	81349	1N4148
CR3	\cdots... SAME AS CR2		
MPU2	- HEAT SINK	33967	51157271
Q1	$\cdots \cdots$ TRANSISTOR, $2 N 2222$ \cdots -	81349	$\begin{aligned} & \text { 2N2222 } \\ & \text { CF1/4-56K, } 5 \% \end{aligned}$
R1	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 56 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-56K, 5\%
R2	$\cdots \mathrm{CRESISTOR}, \mathrm{FIXED}, 430 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-430K, 5\%
R3		09021	CF1/4-1MEG, 5\%
R4	…SAME AS R3		
R5 R6	\cdots RESISTOR, FIXED, $680 \Omega, 1 / 4 W, 5 \%$ \cdots RESISTOR, FIXED, $3.3 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021 09021	$\begin{aligned} & \text { CF1/4-680 } \Omega, 5 \% \\ & \text { CF1/4-3.3K, } 5 \% \end{aligned}$
R7	-RESISTOR, FIXED, $200 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-200K, 5\%
R8	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 39 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-39K, 5\%
R9	-RESISTOR, FIXED, 470K, 1/4W, 5\%	09021	CF1/4-470K, 5\%
R10	\cdots - ${ }^{\text {PESISTOR, FIXED, }} 1.5 \mathrm{M}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-1.5MEG, 5\%
R11	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 22 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-22K, 5\%
R12	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 100 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	$\text { CF1/4-100K, } 5 \%$
R13	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 270 \Omega, 1 / 4 W, 5 \%$	09021	$\text { CFI } / 4-270 \Omega, 5 \%$
R14	.. SAME AS R12 \cdots …RESISTOR, FIXED, 8.2K, 1/4W, 5\%	09021	CF1/4-8.2K, 5\%
$\begin{aligned} & \text { R15 } \\ & \text { R16 } \end{aligned}$	-•SAME AS RI2	09021	CF1/4-8.2K, 5\%

Table 5-1. Receiver Unit 1 Parts List (Continued)

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A6	- CIRCUIT CARD ASSY, OSCILLATOR/AFC	33967	91157449
1A6MP1	\cdots - PRINTED WIRING BOARD	33967	23157449
C1	\cdots - CAPACITOR, VARIABLE, 10-40PF	52763	11040005
C2	\cdots SAME AS CI		10S-TR1 K0-22-N750
C3	\cdots - SAME AS C1		
C4	\cdots. SAME AS C1		
C5	\cdots - SAME AS C1		
C6	\cdots SAME AS C1		
C7	$\cdots \cdots$-. SAME AS Cl		
C8	\cdots - SAME AS Cl		
C9	... NOT PROVIDED		
C10	$\cdots \cdots$ NOT PROVIDED		
C11	\cdots NOT PROVIDED		
Cl 2	\cdots - SAME AS Cl		
C13	\cdots - CAPACITOR, FIXED, . $001 \mu \mathrm{~F}$	22701	10080047
C14	\cdots - SAME AS Cl 3		
C15	\cdots - SAME AS Cl3		
C16	\cdots SAME AS C13		
C17	\cdots... SAME AS C13		
C18	\cdots - SAME AS Cl3		
	\cdots.. SAME AS Cl 3		
C20	\cdots - ${ }^{\text {SAME }}$ AS Cl 3		
C21	$\cdots \cdots$ NOT PROVIDED		
C22	$\cdots \cdots$...NOT PROVIDED		
C23	\cdots...NOT PROVIDED		
C24			
C25 C26	$\cdots \mathrm{C}$ CAPACITOR, FIXED, 3900PF	$\begin{aligned} & 22701 \\ & 31433 \end{aligned}$	T368C106M035AS
C27	\cdots - SAME AS C25		
C28	\cdots-. SAME AS C13		
C29	\cdots... SAME AS Cl3		
C30	-..CAPACITOR, FIXED, 680PF	04062	DM15-221J
C31	- - CAPACITOR, FIXED, 220PF .. SAME AS C30	04062	
C33	\cdots...SAME AS C31		
C34	\cdots - CAPACITOR, FIXED, 5PF	22701	10080011
C35	\cdots...CAPACITOR, FIXED, 82PF	04062	DM15-820J
$\begin{aligned} & \text { C36 } \\ & \text { C37 } \\ & \text { C38 } \end{aligned}$	-•SAME AS C35 -..CAPACITOR, FIXED, IOPF -• SAME AS C13	22701	10080015

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
7Á6			
C39	\cdots - CAPACITOR, FIXED, 12 PF	22701	10080016
C40	\cdots - CAPACITOR, FIXED, IPF	22701	10080001
C41	\cdots - SAME AS C39		
C42	\cdots - SAME AS C34		
C43	\cdots SAME AS CI3		
C44	\cdots - SAME AS C39		
C45	\cdots.-CAPACITOR, FIXED, 22PF	22701	10080020
C46	\cdots - CAPACITOR, FIXED, 47PF	04062	DM15-470J
C47	\cdots SAME AS CI3		
C48	\cdots - CAPACITOR, FIXED, $1 \mu \mathrm{~F}, 63 \mathrm{~V}$	52763	MKT-1822-510/06
C49	$\cdots \mathrm{CAPACITOR}, \mathrm{FIXED}, .1 \mu \mathrm{~F}, 100 \mathrm{~V}$	52763	MKT-1819-410/06
C50	\cdots - SAME AS C26		
C51	\cdots - SAME AS C1		
C52	\cdots...CAPACITOR, FIXED, 33PF	22701	10080024
C53	\cdots - SAME AS Cl3		
C54	\cdots...CAPACITOR, FIXED, $100 \mu \mathrm{~F}, 16 \mathrm{~V}$	52763	EK100/16
C55	\cdots.-SAME AS C48		
C56	…CAPACITOR, FIXED, 2.2PF	22701	10080005
C57 C58	\cdots... SAME AS C26		
C58	\cdots - SAME AS C45		
C59	\cdots-. ${ }^{\text {CAPACITOR, FIXED, }} 18 \mathrm{PF}$	22701	
C60	$\cdots \cdots$ CAPACITOR, FIXED, 27PF	22701	10080022
C61	\cdots-. SAME AS C26		
C62	\cdots CAPACITOR, FIXED, 1000PF, NPO, 5% \cdots. SAME AS C62	51642	200-100-NPO-1023
C64	\cdots - SAME AS C62		
C65	\cdots - SAME AS C62		
C66	\cdots.. SAME AS C26		
C67	\cdots - SAME AS C26		
C68	\cdots - SAME AS Cl3		
C69	\cdots - SAME AS C49		
C70	$\cdots \cdots$ CAPACITOR, FIXED, . $01 \mu \mathrm{~F}$	22701	10080055
C71	$\cdots \cdots$ - SAME AS C70	04713	MV1626
CR2	- . SAME AS CR1		
CR3	\cdots - SAME AS CRI		
CR4	\cdots - SAME AS CRT		
CR5	\cdots - SAME AS CR1		
CR6	\cdots - SAME AS CR1		
CR7	\cdots - SAME AS CR1		

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \text { DESCRIPTION }\end{array}$	MFR CODE No.	MFR PART NO.
1A6			
CR8	\cdots SAME AS CRI		
CR9	…NOT PROVIDED		
CR10	$\cdots \cdots$ - NOT PROVIDED		
CR11	\cdots - NOT PROVIDED		
CR12	\cdots - SAME AS CR1		
CR13	- ${ }^{\text {c. DIODE, HP 5082-3168 }}$	04404	5082-3168
CR14	\cdots - SAME AS CRI 3		
CR15	\cdots SAME AS CR13		
CR1 6	\cdots SAME AS CR13		
CR17	\cdots - SAME AS CR13		
CR18	\cdots - SAME AS CR13		
CR19	\cdots SAME AS CR13		
CR20	\cdots SAME AS CRI3		
CR21	\cdots NOT PROVIDED		
CR22	\cdots... NOT PROVIDED		
CR23	\cdots...NOT PROVIDED		
CR24	\cdots.. SAME AS CR13	07263	FH100
CR25		23880	32256
L2	\cdots... INDUCTOR, FIXED, $100 \mu \mathrm{H}$	99800	1025-68
L3	‥ SAME AS LI		
L4 L5		23800	12255
L6	\cdots.. SAME AS L4		
L7	\cdots - SAME AS L4		
MPQ5	- . FERRITE BEAD ...TRANSISTOR, 2N918	$\begin{aligned} & 02114 \\ & 81349 \end{aligned}$	$\begin{aligned} & 56590-65 / 4 \mathrm{~A} \\ & 2 \mathrm{~N} 918 \end{aligned}$
Q1	\cdots - TRANSISTOR, 2 N918		
Q2	\cdots - SAME AS Q1		
Q3	\cdots - SAME AS Q1		
Q4	\cdots.. SAME AS 01		
Q5	\cdots - ${ }^{\text {- TRANSISTOR, }}$, 2 N2222	$\begin{aligned} & 81349 \\ & 09021 \end{aligned}$	CF1/4-100K,5\%
R1	…RESISTOR, FIXED, 100K, 1/4W, 5\%		
R2	\cdots - SAME AS R1		
R3	\cdots-. SAME AS R1		
R4	\cdots - SAME AS RI		
R5	\cdots - SAME AS RT		
R6	\cdots.. SAME AS R1		
R7	\cdots - SAME AS R1		
R8	\cdots SAME AS R1		

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
TA6			
R9	\cdots - ${ }^{\text {NOT PROVIDED }}$		
R10	...NNOT PROVIDED		
R11	\cdots - NOT PROVIDED		
R12	\cdots SAME AS RI		
R13	\cdots - RESISTOR, FIXED, 1K, 1/4W, 5\%	09021	CFI/4-1K, 5%
R14	\cdots - SAME AS R13		
R15	\cdots - SAME AS R13		
R16	\cdots SAME AS R13		
$\mathrm{R17}$	\cdots... SAME AS R13		
R18	\cdots - SAME AS R13		
R19	\cdots - SAME AS RI3		
R20	\cdots - SAME AS R13		
R21	\cdots...NOT PROVIDED		
R22	\cdots... NOT PROVIDED		
R23	\cdots - NOT PROVIDED		
R24	\cdots - SAME AS RT3		
R25	$\cdots \mathrm{C}$ - ${ }^{\text {- }}$	09021	CF1/4-18K, 5\%
R26	\cdots - ${ }^{\text {- }}$ SAME AS R25		
R27	\cdots...RESISTOR, FIXED, 270Ω, 1/4W, 5\% - - SAME AS R27	09021	CF1/4-270 ${ }^{\text {, }} 5$
R29	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 33 \mathrm{~K}, \mathrm{1/4W}$, 5%	09021	CFT/4-33K, 5\%
R30	\cdots - ${ }^{\text {- SAME AS R27 }}$		
R31	$\cdots \cdots$ - ${ }^{\text {C- }}$ SESISTOR, FIXED, $10 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-10K, 5\%
R32	…SAME AS R29		
R33	\cdots...RESISTOR, FIXED, 560Ω, 1/4W, 5%	09021	CFI/4-560,
R34	\cdots - SAME AS R29		
R35	- . SAME AS R33		
R36	\cdots...SAME AS 225		
R37	\cdots...SAME AS R13		
R38	- . SAME AS R31		
R39	\cdots - SAME AS R13		
R40	\cdots - ${ }^{\text {RESISTOR, FIXED, }}$ 22M, 1/4W, 5%	09021	CFI/4-22M, 5\%
R41	\cdots - SAME AS R31		
R42	\cdots - SAME AS R31		
R43	\cdots - SAME AS RI3		
R44	\cdots RESISTOR, FIXED, $330 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-330 ${ }^{\text {, }} 5$
R45	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 68 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-68K, 5\%
R46	\cdots - SAME AS R45		
R47	\cdots. SAME AS R31		
R48	\cdots - SAME AS R45		

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A6			
R49	\cdots - SAME AS R45		
R50	\cdots - SAME AS R31		
R51	\cdots - SAME AS R13		
R52	\cdots...SAME AS RI3 3 .- ${ }^{\text {a }}$		
R53	\cdots - ${ }^{\text {RESISTOR, FIXED, } 6.8 \mathrm{~K}, ~ 1 / 4 W, ~ 5 \% ~}$	09021	CF1/4-68K, 5\%
R54	\cdots - SAME AS R31		
R55		31349	RN55C3922F
R56 R57	\cdots RESISTOR, FIXED, 39.2K, 1\%, RN55C \cdots SAME AS R56	31349	RN55C3922F
R58	\cdots. SAME AS R56		
R59	\cdots - SAME AS R56		
R60	\cdots - ${ }^{\text {RESISTOR, FIXED, } 470 \Omega, 1 / 4 W, 5 \% ~}$	09021	CF1/4-470 ${ }^{\text {, }} 5$
R61	\cdots - RESISTOR, FIXED, $100 \Omega, 1 / 4 W, 5 \%$	09021	CF1/4-100 Ω, 5%
R62	\cdots - RESISTOR, FIXED, $910 \Omega, 1 / 4 W, 5 \%$	09021	$\text { CFI/4-910 }, 5 \%$
TP1	\cdots - TEST POINT, WHITE	74970	$105-0751-001$
TP2	\cdots...TEST POINT	88245	2000B
TP3	\cdots - TEST POINT, BROWN	74970	105-0758-001
TP4	\cdots. TEST POINT, ORANGE	74970	105-0756-001
TP5	\cdots. TEST POINT, YELLOW	74970	105-0757-001
TP6	\cdots - TEST POINT, BLACK	74970	105-0753-001
U1	- - MICROCIRCUIT, SCL4446A/BC	31019	SCL4446A/BC
U2	- ${ }^{\text {M MICROCIRCUIT, MC14069BCL }}$	04713	MC14069BCL
XQ1	. . TRANSIPAD	19080	RCT018030-2
XQ2	... SAME AS XQ1		
X03	...SAME AS XQ1		
$\times 04$... SAME AS XQ1		
XQ5	... SAME AS XAI		
Y1	\cdots - CRYSTAL, CH6 15.488838 kHz	00809	16180006
Y2	\cdots..CRYSTAL, CH 1215.522222	00809	16180012
Y3	\cdots..CRYSTAL, CHI 315.527777	00809	16180013
Y4	\cdots - CRYSTAL, CH14 15.533333	00809	16180014
Y5	\cdots CRYSTAL, ${ }^{\text {CH16 } 15.44444 ~ k H z ~}$	00809	16180016
Y6	\cdots - CRYSTAL, CH22A 15.577777	00809	16180042
Y7	- . CRYSTAL, W1 16.183333	00809	16180000
Y8	\cdots..CRYSTAL, W2 16.166666 kHz	00809	16180032
Y9 Y10	...NOT PROVIDED ...NOT PROVIDED		
Y11	... NOT PROVIDED		
Y12	…CRYSTAL, 121.5 AM 15.377777 kHz	00809	16180055
Y13	...CRYSTAL, 446.25KHZ	00809	16000403

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A6 MPWY1-12 MPY1-12 MP2 MP3	...CRYSTAL SOCKET FOR ALL CRYSTALS ...BRACKET FOR ALL CRYSTALS ...EJECTOR ...SAME AS MP2	$\begin{aligned} & 74970 \\ & 33967 \\ & 32559 \end{aligned}$	$\begin{aligned} & 126-0110-008 \\ & 51157274 \\ & C P-66 \end{aligned}$

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART N NO.
1 A7	.CIRCUIT CARD ASSY, ANALOG BD ..PRINTED WIRING BOARD ...CAPACITOR, FIXED, $10 \mu \mathrm{~F}, 35 \mathrm{~V}$ TANT, 20\% ...CAPACITOR, FIXED, 1000PF, 5%, WEST-CAP	33967	$\begin{aligned} & 157424 \\ & 23157424 \end{aligned}$
1A7MP1		33967	23157424
Cl		31433	T368C106M035AS
C2		52763	KP-1834-210/63
C3	...CAPCITOR, FIXED, $100 \mu \mathrm{~F}, 16 \mathrm{~V}$,	52763	EK 100/16
C4	$\begin{aligned} & \ldots \text { SAME AS C2 } \\ & \ldots \text { SAME AS } \mathrm{Cl} \\ & \ldots \text { SAME AS C1 } \end{aligned}$		
C5			
C6			
C7	...SAME AS C1 ...CAPACITOR, FIXED, 6.8PF, 5\%, NPO ...CAPACITOR, FIXED, 200PF, 5\%, SIL. MICA CAPACITOR, FIXED, $22 \mu \mathrm{~F}, 25 \mathrm{~V}$		
C8		22701	10080013
C9		04062	DM15-201J
C10		56289	109D226X9025C2
C11	$\begin{aligned} & \ldots \text { SAME AS C10 } \\ & \ldots \text { SAME AS C10 } \\ & \ldots \text { SAME AS C10 } \\ & \ldots \text { CAPACITOR, FIXED, } 47 \mu \mathrm{~F}, 50 \mathrm{~V} \\ & \text { TANT, } 10 \% \end{aligned}$		
C12			
C13			
C14		56289	109D476X9050C2
C15	...SAME AS C14 ...SAME AS C14 ... SAME AS C14 ...SAME AS C2		
C16			
C17			
C18			
C19	...CAPACITOR, FIXED, $47 \mu \mathrm{~F}, 6 \mathrm{~V}$... SAME AS CI ...CAPACITOR, FIXED, 180PF, 5%, SIL. MICA	56289	109D476X0006KA1
$\begin{aligned} & \text { C20 } \\ & \text { C21 } \end{aligned}$		04062	DM15-181J
C22 C23	...SAME AS C1	22701	10080020
C24	...CAPACITOR, FIXED, 22PF, 5%, NPO ...CAPACITOR, FIXED, 510PF, 5%, SIL. MICA ...CAPACITOR, FIXED, 1500PF, POLYSTYRENE		
C25		04062 52763	$\begin{aligned} & \text { DM15-511J } \\ & \text { KP1834-215/16 } \end{aligned}$
C26	...CAPACITOR, FIXED, 1000PF, 5%, NPO ...CAPACITOR, FIXED, 3900PF, POLYSTYRENE	51642	200-100-NPO-1025
C27		52763	KP1834-239/06
C28	...SAME AS C1		
C29	... SAME AS C23 .. CAPACITOR, FIXED, $.47 \mu \mathrm{~F}$		
C30 C31	...CAPACITOR, FIXED, . $47 \mu \mathrm{~F}$...SAME AS C2	51642	300-100-W5R-474K

Tabel 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1 A7			
C32	... SAME AS C1		
C33	... SAME AS C23		
C34	...SAME AS C1		
C35	...CAPACITOR, FIXED, 2.OPF, 5\%, NPO	22701	10080005
C36	...SAME AS C1		
C37	... SAME AS CI		
C38	...CAPACITOR, FIXED, . $022 \mu \mathrm{~F}$, POLYESTER	52763	MKT1819-322/06
C39	\ldots...SAME AS Cl		
C40	... SAME AS C23		
C41	...SAME AS C1		
C42	... SAME AS Cl		
C43	. . SAME AS C35		
C44	...SAME AS C1		
C45	...CAPACITOR, . $010 \mu \mathrm{~F}$. POLYSTYRENE	32440	B52A103K
C46	...SAME AS C9		
C47	. . SAME AS C1		
C48	... SAME AS C1		
C49	...SAME ASCI		
C50	...CAPACITOR, FIXED, . $18 \mu \mathrm{~F}, 50 \mathrm{~V}$, W5R	51642	300-050-WR5-18HK
C51	\ldots.. SAME AS Cl		
C52	. . . DELETED		
C53	...DELETED		
C54	...SAME AS C26		
C55	...CAPACITOR, . $015 \mu \mathrm{~F}$	52763	MKT1819-315/06
C56	. . . DELETED		
C57	. . . DELETED		
C58	... SAME AS C45		
C59	... SAME AS C1		
C60	. . SAME AS C9		
C61	... SAME AS C1		
C62	\ldots...CAPACITOR, . $001 \mu \mathrm{~F}, 20 \%$, 25F	22701	10080047
C63	...SAME AS C62		
C64	. . SAME AS C62		
C65	... SAME AS C62		
C66	... SAME AS C62		
C67	... SAME AS C62		
C68	... SAME AS C62		
CR1	... DIODE, HP5082-3168		
E1	...WIRE, 24GA	81349	MIL-W-16878
E2	...SAME AS E1		

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A7	...SAME AS ET		
E3			
E4	$\cdots \cdots$.. SAME AS E1	55210	L-2007-1
E5			
E6	…JUMPER, . 4 SPACING - . SAME AS E5		
E7	\cdots... SAME AS E5		
E8	\cdots - SAME AS E5		
E9	\cdots - SAME AS E5		
E10	- \cdot SAME AS E5		
E11	\cdots - SAME AS E1		
E12	-. SAME AS El -•SAME AS El2		
E13			
L1	\cdots. Inductor, FIXED, $1000 \mu \mathrm{Hy}$	17490	WEE -1000
L2	\cdots - SAME AS L1		
L3	- . SAME AS LI		
MPQ1	\cdots. HEATSINK	04713	6073B MJE1100
Q1	\cdots - TRANSISTOR, MJE1100		
Q2	\cdots. TRANSISTOR, 2N2222	81349	2N2222
R1	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 5.6 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-5.6K, 5\%
R2	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 80.6 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349 09021	
R3			RN55C1543F
R4	\cdots...RESISTOR, FIXED, $154 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349	
R5	\cdots...RESISTOR, FIXED, $470 \Omega, 1 / 4 W, 5 \%$ -. SAME AS R3	09021	CF1/4-470, 5%
R6			
R7	$\cdots \cdots$-.. SAME AS R3		CFI/4-5.6K, 5\%
R8	$\cdots$$\cdots$$\cdots$ SAME AS R1SAME AS R1	09021	CF1/4-5.6K, 5\%
R9			
R10	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 12.1 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	31349	
R11		81349	RN55C4752F
R12	\cdots.. RESISTOR, FIXED, $47.5 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$ \cdots. $\operatorname{RESISTOR,~FIXED,~} 100 \Omega$, $1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-100 2 , 5\%
R13	\cdots -	09021	CFI/4-200K, 5\%
	$\cdots \text { RESISTOR, FIXED, 100K, } 1 / 4 \mathrm{~W}, 5 \%$		
R15		$\begin{aligned} & 09021 \\ & 09021 \end{aligned}$	CF1/4-100K, 5\%
R16	\cdots...RESISTOR, FIXED, 100K, 1/4W, 5\% \cdots. $\operatorname{RESISTOR,~FIXED,~} 680 \Omega$, $1 / 4 \mathrm{~W}, 5 \%$	09021	
R17	- - SAME AS R12 …RESISTOR, FIXED, $562 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	31349	RN55C5623F
R18 R19	...SAME AS R3	31349	
R20	\cdots - SAME AS R3		
R21		09021	$\text { CF1/4-51 } \Omega, 5 \%$
R22	- \cdots RESISTOR, FIXED, $51 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	81349	RN55C2002F
R23	\cdots SAME AS R22 \cdots. $\operatorname{RESISTOR}, ~ F I X E D, ~ 39 K, ~ 1 / 4 W, 5 \%$		
R24		09021	CF1/4-39K, 5\%

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A7			
R25	\cdots - SAME AS R12		
R26	\cdots '. ${ }^{\text {RESISTOR, FIXED, }} 61.9 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349	RN55C6192F
R27	\cdots - ${ }^{\text {RESSISTOR, FIXED, }} 11.8 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349	RN55C1182F
R28	\cdots		
R29	\cdots - SAME AS R22		
R30	\cdots SAME AS R12		
R31	$\cdots \cdots$ - ${ }^{\text {RESISTOR, FIXED, }} 2 \mathrm{~K}, 1 / 4 W, 5 \%$	09021	CF1/4-2K, 5\%
R32	…RESISTOR, VARIABLE, 25K	73138	89P25K
R33	…RESISTOR, VARIABLE, 10K	73138	89P10K
R34	\cdots - SAME AS R3		
R35	\cdots.. SAME AS R3		
R36	\cdots - SAME AS R15		
R37	\cdots - SAME AS R15		
R38	\cdots - SAME AS R4		
R39	\cdots - SAME AS R12		
R40	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 76.8 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349	RN55C7682F
R41	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 4.7 \mathrm{~K}, 1 / 4 W, 5 \%$	09021	$\mathrm{CFl} / 4-4.7 \mathrm{~K}, 5 \%$
R42	\cdots - ${ }^{\text {PRSSISTOR, FIXED, }} 22 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-22K, 5\%
R43	$\cdots \cdots$ - ${ }^{\text {PESISTOR, }} 33 \mathrm{~K}, ~ 1 / 4 W, 5 \%$	09021	CFI/4-33K. 5%
R44	\cdots - ${ }^{\text {RESISTOR, FIXED, } 27.4 \mathrm{~K}, ~ 1 / 8 W, ~} 1 \%$	81349	RN55C2742F
R45	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 57.6 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349	RN55C57б2F
R46		81349	RN55C6041F
R47	\cdots - SAME AS R12		
R48	\cdots - SAME AS R15		
R49	\cdots - SAME AS R15		
R50	- . - DELETED		
R51	\cdots - ${ }^{\text {S }}$ SAME AS R12		
R 52	\cdots - SAME AS R31		
R 53			
R54	\cdots - ${ }^{\text {RESISTOR, VARIABLE, }}$ IO0K	73138	72XW100K
R55	\cdots. ${ }^{\text {S SAME AS R }}$ R 5		
R56	\cdots..-SAME AS R15		
R 57	$\cdots \cdots$ - ${ }^{\text {PESISTOR, FIXED, }} 3.3 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-3.3K $\Omega, 5 \%$
R58	\cdots - SAME AS R15		
R59	\cdots - SAME AS R15		
R60	\cdots - DELETED		
R61	$\cdots \cdots$ DELETED		
R62	$\cdots \cdots$ DELETED		
R63	\cdots - DELETED		
R64	\cdots - DELETED		

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A7			
R65	$\cdots \cdots$ - ${ }^{\text {deLETED }}$		
R66	$\cdots \cdots$ - ${ }^{\text {DELETED }}$		
R67	\cdots - SAME AS R3		
R68	\cdots SAME AS R3		
R69	\cdots - SAME AS R42		
R70	\cdots - ${ }^{\text {RESISTOR, FIXED, } 270 \Omega, ~ 1 / 4 W, ~ 5 \% ~}$	09021	CF1/4-270 ${ }^{\text {, }} 5$
R71	…SAME AS R70	01121	CF1/4-EB, 5\%
R72		01721	CF1/4-EB, 5\%
R74	\cdots - ${ }^{\text {RESISTOR, FIXED, } 2.7 \Omega, ~ 1 / 4 W, ~ 5 \% ~}$	09021	CF1/4-2.7 Ω, 5\%
R75	\cdots - RESISTOR, FIXED, $1 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CFI/4-1K, 5\%
R76	\cdots - DELETED		
R77	\cdots - SAME AS R75		
TP1	\cdots. TEST POINT, WHITE	74970	105-0751-001
TP2	\cdots. TEST POINT, BROWN	74970	105-0758-001
TP3	\cdots. TEST POINT, YELLOW	74970	
TP4	\cdots - TEST POINT, GREEN	74970	105-0754-001
U1	- - MICROCIRCUIT, LF256H	27014	LF256H
U2	\cdots - MICROCIRCUIT, LM201AH	27014	LM201AH
U3	- \cdot MICROCIRCUIT, MC14001BCL	04713	MC14001BCL
U4	\cdots...SAME AS U2		
U5	\cdots - SAME AS U2		
U6	\cdots SAME AS U2		
U7	...MICROCIRCUIT, CA3130AS	02735	CA31 30AS
U8	\cdots SAME AS U2		
U9	\cdots.. SAME AS U7		
010	\cdots - SAME AS U2		
U11	…MICROCIRCUIT, MC14066BCL	04713	MC14066BCL
U12	$\cdots \cdots$ SAME AS U11		
U13	\cdots SAME AS U11		
U14	…SAME AS U11		
VR1	$\cdots \cdots$ DIODE, \cdots \cdots SILPAD	81349 55285	$\begin{aligned} & \text { 1N747A } \\ & 7403-10-51 \end{aligned}$
XQ2	\cdots - TRANSIPAD, T0-18	19080	RCT018030-2
$\begin{array}{\|l\|l\|} \hline \text { MP2 } \\ \text { MP3 } \end{array}$. . .EJECTOR ...SAME AS MP2	32559	CP-66

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A8	. CIRCUIT CARD ASSY, DIGITAL BOARD	33967	9115-7425
1A8MP1	..PRINTED WIRING BOARD	33967	23157425
C1	...CAPACITOR, FIXED, . $001 \mu \mathrm{~F}$	22701	10080047
C2	...CAPACITOR, FIXED, . $10 \mu \mathrm{~F}$	52763	MKT-1819-410/0
C3	...CAPACITOR, VARIABLE, 10-40PF	52763	10S-TR1K0-22-N750
C4	...CAPACITOR, FIXED, 27PF	22701	10080024
C5	...CAPACITOR, FIXED, 680PF	04062	DM15-681 J
C6	...CAPACITOR, FIXED, 47PF	22701	10080026
C7	...SAME AS C6		
C8	... SAME AS Cl		
C9	\ldots...CAPACITOR, FIXED, $10 \mu \mathrm{~F}, 35 \mathrm{~V}$	31432	T368C106M035AS
C10	...CAPACITOR, FIXED, 3900PF	22701	
C11	... SAME AS CI		
C12	. . SAME AS C9		
C13	\ldots...CAPACITOR, FIXED $100 \mu \mathrm{~F}$, 40V	52763	EK 100/40
C14	... SAME AS C13		
C15	...SAME AS C1		
C16	... SAME AS C9		
C17	...SAME AS C9		
C18	... SAME AS C9		
C19	... SAME AS C9		
C20	... SAME AS C9		
L1	…INDUCTOR, $100 \mu \mathrm{H}$	99800	1025-68
Q1TRANSISTOR, 2 N918	81349	2N918
Q2	...TRANSISTOR, 2N2222	81349	2N2222
Q3	... SAME AS Q2	04713	MJE1100
Q4	…TRANSISIOR, \ldots, ${ }^{\text {RESISTOR, FIXED, } 270 \Omega, 1 / 4 W, 5 \%}$	09021	CF1/4-270s, 5\%
R2RESISTOR, FIXED, $10 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	09021	CF1/4-10K, 5\%
R3	...SAME AS R2		
R4	...RESISTOR, FIXED, $1 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$ $\ldots .$. RESISTOR, FIXED, $100 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	99021	$\text { CF1/4-100K, } 5 \%$
R6	\ldots...SAME AS R2		
R7	...SAME AS R5		
R8	...SAME AS R2		
R9	...SAME AS R4		
R10	...DELETED		
R11	\cdots..SAME AS RT		
R12 R13	...RESISTOR, FIXED, $1 \Omega, 1 / 4 \mathrm{~W}, 5 \%$ \ldots...RESISTOR, FIXED, $47 \mathrm{~K}, 1 / 4 \mathrm{~W}, 5 \%$	99021	$\text { CFI } / 4-47 \mathrm{~K}, 5 \%$

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A8 R14 R15 R16 R17 R18	$\begin{aligned} & \ldots \text {. RESISTOR, FIXED, } 560 \Omega, 1 / 2 \mathrm{~W}, 5 \% \\ & \ldots \text { SAME AS R14 } \\ & \ldots \text { SAME AS R14 } \\ & \ldots \text { SAME AS R14 } \\ & \ldots \text { SAME AS R14 } \end{aligned}$	01121	TYPE "EB"

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART No.
1A8			
R19	... SAME AS RT4		
R20	...SAME AS R14		
R21	...SAME AS R14		
R22	...SAME AS R14		
R23	...SAME AS R14		
R24	...SAME AS R14		
R25	...SAME AS R14		
R26	...SAME AS R14		
R27	...SAME AS R14		
R28	...SAME AS R14		
R29	...SAME AS R14		
R30	...SAME AS R14		
R31	...SAME AS R14		
R32	...SAME AS R14		
R33	...SAME AS R14		
R34	... SAME AS R14		
R35	...SAME AS R5	-	
R36	... SAME AS R2		
R37	... SAME AS R5		
TP1	...TEST POINT, WHITE	74970	105-0751-001
TP2	...TEST POINT, GREEN	74970	105-0754-001
U1	. . . MICROCIRCUIT, MC14013BCL	04713	MC14013BCL
U2	.. . SAME AS UI		
U3	...MICROCIRCUIT, MC 1427BCL	04713	MC14027BCL
U4 U5	...SAME AS U3 SAME AS U1		
U6	...MICROCIRCUIT , MC14518BCL	04713	MC14518BCL
U7	. . SAME AS U6		
48	. . MICROCIRCUIT, MC14511BCL	04713	MC14511BCL
49	...SAME AS U8		
U10	...SAME AS U8		
U11	. . . MICROC IRCUIT, ULN2004A	56289	ULN2004A
U12	...SAME AS Ul1		
U13	...SAME AS Ul1		
U14	...SAME AS U1		
415	. . . MICROCIRCUIT , MCI4020BCL	04713	MC14020BCL
416	... SAME AS U1		
017 $\times 01$...MICROCIRCUIT,MC14069BCL	04713 19080	MC1469BCL RCT018030-2
XQ1 XQ2	...TRANSIPAD T018 \ldots. . SAME AS XQ1	19080	RCT018030-2
XQ3	... SAME AS XQ1		

Table 5-1. Receiver Unit 1 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
1A8 XQ4 Y 1 MP 2 MP3 MPQ4	$\begin{aligned} & \ldots \text {...SIL PAD } \\ & \ldots \text { CRYSTAL } 5787.2 \mathrm{KHZ} \\ & \ldots \text { EJECTOR } \\ & \ldots \text { SAME AS MPL } \\ & \ldots \text { HEAT SINK } \end{aligned}$	$\begin{aligned} & 55285 \\ & 00809 \\ & 32559 \\ & 13103 \end{aligned}$	$\begin{aligned} & 7403-10-51 \\ & 166000404 \\ & C P-66 \\ & 6106-B-14 \end{aligned}$

Table 2. Antenna Unit 2 Parts List

Table 5-2. Antenna Unit 2 Parts List (Continued)

REF DESIG	$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
2 Al	- CIRCUIT CARD ASSY, ANTENNA RF PHASING - PRINTED WIRING BOARD \cdots CAPACITOR, FIXED, $430 \mathrm{PF}, 100 \mathrm{~V}, \pm 5 \%$ …dELETED \cdots. SAME AS Cl	33967	91157457
2A1MP1		33967	23157457
Cl		04062	DM15-431J
C2			
C3			
C4	…dELETED \cdots SAME AS Cl \cdots...dELETED \cdots SAME AS Cl …dELETED		
C5			
C6			
C7			
C8			
C9	$\begin{aligned} & \cdots \text { CAPACITOR, FIXED, } 620 \mu \mathrm{~F}, 8 \mathrm{~V}, \\ & \\ & \text { TOL }+20,-15 \% \\ & \cdots \text { SAME AS C9 } \\ & \cdots \text { SAME AS C9 } \\ & \cdots \text { SAME AS C9 } \\ & \cdots \text { CAPACITOR, FIXED, } 15 P F, 100 \mathrm{~V}, \pm 10 \% \end{aligned}$	09214	69F2208G7
C10			
C11			
C12			
C13		51642	150-100-NPO-150K
CR1	…PIN DIODE, IN5767 - . SAME AS CRI - . SAME AS CRI - . SAME AS CRI	81349	1N5767
CR2			
CR3			
CR4			
L1	…INDUCTOR, FIXED, $2.2 \mu \mathrm{H} \pm 10 \%, 1 / 2 \mathrm{~W}$ SIZE	17490	WEE-2.2
L2	\cdots - SAME AS L1		
L3	\cdots - SAME AS LI		
L4	\cdots. SAME AS LI		
L5	\cdots - SAME AS LI		
L6	\cdots SAME AS L1\cdots SAME AS L1\cdots SAME AS L1		
L7			
L8			
L9	\cdots SAME AS LI …INDUCTOR, FIXED, $0.1 \mu \mathrm{H} \pm 10 \% \mathrm{1} / 2 \mathrm{~W}$ SIZE		
L10		17490	WEE-0.10
R1	\cdots - DELETED		
R2	$\cdots \cdots$ DELETED		
R3			
R4	… DELETED \cdots... 1/8W, 1\%, MF	81349	RN55C
R5			
R6	\cdots.. SAME AS R5		
R7	\cdots... SAME AS R5		

Table 5-2. Antenna Unit 2 Parts List (Continued)

Table 5-2. Antenna Unit 2 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO	MFR PART NO.
2 A 2		33967	91157439
2A2MP1		33967	23157439
C1	-•PRINTED WIRING BOARD \cdots NOT USED		
C2	\cdots... SAME AS CI		
C3	\cdots - SAME AS CI		
C4			
C5	…CAPACITOR, FIXED, $10 \mu \mathrm{~F}$ @ 35 V ...CAPACITOR, FIXED, . 001μ F	31433	T368C106M035AS
C6		22701	10080047
C7	\cdots CAPACITOR, FIXED, $100 \mu \mathrm{~F}$ @ 16 V -. SAME AS C7	52763	EK-100/16
C8			
C9	- CAPACITOR, FIXED, . $1 \mu \mathrm{~F}$ …CAPACITOR, FIXED, 6800PF …DIODE, IN4002 \cdots. SAME AS CRI …CONNECTOR, SMA	52763	MKT-1819-410/06
C10		51642 81349	300-100-10G-682J
CR1		81349	1 N4002
CR2			
J1		74970	142-0298-001
L1	\cdots - INDUCTOR, FIXED, $2.2 \mu \mathrm{HY}$	17490	WEE-2.2
Q1	…TRANSISTOR, 2N2219 \cdots SAME AS QI \cdots SAME AS Q1 \cdots SAME AS QI \cdots RESISTOR, FIXED, $680 \Omega, 1 / 4 \mathrm{~W}, 5 \%$	81349	2N2219
Q2			
Q3			
Q4			
R1		09021	CFI/4-680 Ω, 5\%
R2	\cdots SAME AS R1 \cdots SAME AS R1 \cdots. SAME AS RI \cdots RESISTOR, FIXED, $10 \Omega, 1 / 4 W, 5 \%$ \cdots...SAME AS R5		
R3			
R4			
R5 R6		09021	CFI/4-10 Ω, 5%
R7	.. SAME AS R5 - SAME AS R5		
R8			
R9	\cdots RESISTOR, FIXED, 10K, 1/8W, 1\%, MF \cdots. sAME AS R9	81349	RN55Cl002F
R10	\cdots - SAME AS R9		
$\begin{aligned} & \text { R12 } \\ & \text { R13 } \\ & \text { R14 } \\ & \text { R15 } \\ & \text { R16 } \end{aligned}$...SAME AS R9 \cdots...RESISTOR, FIXED, 100Ω, $1 / 4 \mathrm{~W}, 5 \%$.. SAME AS R13 ...SAME AS R13 - SAME AS R13		
		09021	CF1/4-100 2 , 5\%

Table 5-2. Antenna Unit 2 Parts List (Continued)

REF DESIG	$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { DESCRIPTION }\end{array}$	MFR CODE NO.	MFR PART NO.
2 A 2			
R17	\cdots - SAME AS R9		
R18	\cdots - SAME AS R9		
R19	\cdots - SAME AS R9		
R20	\cdots - SAME AS R9		
R21	\cdots - SAME AS R9		
R22		81349	RN55C5111 F
R23	\cdots - SAME AS R22		
R24	\cdots - SAME AS R22		
R25	$\cdots \mathrm{CRESISTOR}, ~ F I X E D, ~ 56 ~ \Omega, ~ 1 / 4 W, 5 \%$	09021	CF1/4-56 Ω, 5\%
R26	\cdots - ${ }^{\text {RESISTOR, FIXED, }} 4.75 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349	RN55C4751F
R27	\cdots...RESISTOR, VARIABLE 1 K	$\begin{aligned} & 73138 \\ & 81349 \end{aligned}$	
R28	$\cdots \mathrm{C}$ - ${ }^{\text {RESISTOR, }} 56.2 \mathrm{~K}, 1 / 8 \mathrm{~W}, 1 \%$	81349 27014	$\begin{aligned} & \text { RN5SC5622F } \\ & \text { LM224N } \end{aligned}$
U1	- - MICROCIRCUIT, LM224N	19080	$\begin{aligned} & \text { LM224N } \\ & \text { RCT05030-2 } \end{aligned}$
XQ1	...TRANSI PAD		
XQ2	... SAME AS XQ1		
XQ3	. . SAME AS XQI		
XQ4	...SAME AS XQ1		
XQ5	...SAME AS XQ1		
MPJI	...CAP PLUG	99017	K-5

Table 5-4. Code List of Manufacturers

The following code numbers are extracted from the Federal Supply Code for Manufacturers Cataloging Handbooks $\mathrm{H} 4-1$, and $\mathrm{H} 4-2$, and their supplements.		
$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	MANUFACTURER	ADDRESS
00656	AEROVOX	AEROVOX NEW BEDFORD, CONN
00779	AMP INC.	AMP INC. P.O. BOX 3608 HARISBURG, PA 17105
00809	TEDFORD/HARRIS	TEDFORD/HARRIS CROVEN LTD. 500 BEECH ST. WHITBY, ONTARIO CANADA
01121	ALLEN BRADLEY CO.	ALLEN BRADLEY CO. 1201 2nd ST. SOUTH MILWAUKEE, WIS 53204
01506	GORIMAN FIRE EQUIP. CO	GORMAN FIRE EQUIPMENT CO. 30D ST. SOUTH BOSTON, MA 02127
02114	FERROX	FERROXCUBE CORP. P.O. BOX 359 MT. MARION RD SAUGERTES, NY 12477
02660	AMPHENOL	BUNKER RAMO CORP. CONNECTOR DIV. 2801 S. 25th AVE BROADVIEW, IL 60153
02735	RCA	RCA CORP. SOLID STATE DIV. ROUTE 202 SOMERVILLE, NJ 08876

Table 5-4. Code List of Manufacturers

The following code numbers are extracted from the Federal Supply Code for Manufacturers Cataloging Handbooks $\mathrm{H4}-1$, and $\mathrm{H} 4-2$, and their supplements.		
$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	MANUFACTURER	ADDRESS
04222	AVX CERAMICS	AVX CERAMICS 19th AVE SOUTH MYRTLE BEACH, SC 29577
04062	ELMENCO	ELECTRO MOTIVE CORP. SUBSIDIARY OF INTERNATION ELECTRONICS CORP. P.O. BOX 7600 LAUTER AVE FLORENCE, SC 29501 FC 72036
04404	HP	HEWLETT-PACKARD CO. AUTOMATIC MEASUREMENT DIV. 974 ARQUES AVE SUNNYVALE, CA 94086
04713	MOTOROLA	MOTOROLA INC. SEMICONDUCTOR PRODUCTS DIV. P.0. BOX 209235005 E. McDOWELL RD PHEONIX, AZ 85036
07109	OAKLAND IND. INC.	OAKLAND IND. INC. 704 30th MONROE WI 53566
07263	FAIRCHILD	FAIRCHILD CAMERA AND INSTRUMENT CORP. SEMICONDUCTOR DIV. 464 ELLIS ST. MOUNTAIN VIEW, CA 94042
07933	RAYTHEON	RAYTHEON CO. SEMICONDUCTOR DIV. T \& Q 350 ELLIS ST. MOUNTAIN VIEW, CA 94042
09021	SPEER-AIRCO	AIRCO ELECTRONICS P.O. BOX 334 FOSTER BROOK RD BRADFORD, PA 16701

Table 5-4. Code List of Manufacturers

$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	MANUFACTURER	ADDRESS
13013	THERMALLOY	THERMALLOY CO. INC. P.0. BOX 34829 2021 W. VALLEY VIEW LANE DALLAS, TX 75234
09214	G.E.	GENERAL ELECTRIC CO. SEMICONDUCTOR PRODUCTS DEPT. POWER SEMICONDUCTOR PRODUCTS OPN SEC. W. GENESSEE ST. AUBURN, NY 13021
17490	NYTRONICS	NYTRONICS INC. 105 MADISON AVE NEW YORK, NY 10016 FC 72259
19080	ROBISON	ROBISON ELECTRONICS INC. 3580 SACRAMENTO DR. SAN LUIS OBISPO, CA 93401
22360	ESSEX	ESSEX CHEMICAL CORP. 1401 BROAD ST. CLIFTON, NC 07015
22701	DILECTRON	BESTRAN CORP. DILECTRON DIV 2669 SO. MYRTLE AVE MONTROVIA, CA 91016
23600	DELMAN	THE DELMAN CO 2850 W. GRAND BLVD. DETROIT, MI 48202
23880	SAE	STANDFORD APPLIED ENGINEERING INC. 340 MARTIN AVE. SANTAN CLARA, CA 95050

Table 5-4. Code List of Manufacturers

The following code numbers are extracted from the Federal Supply Code for Manufacturers Cataloging Handbooks H4-1, and H4-2, and their supplements.		
CODE NO.	MANUFACTURER	ADDRESS

Table 5-4. Code List of Manufacturers

The following code numbers are extracted from the Federal Supply Code for Manufacturers Cataloging Handbooks $\mathrm{H} 4-1$, and $\mathrm{H} 4-2$, and their supplements.		
$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	MANUFACTURER	ADDRESS
32440	ECC	ENGINNERING COMP. CO. 3580 SCARAMENTO DR SAN LOUIS OBISPO, CA 93406
33967	INTECH INC.	INTECH INC. 282 BROKAW RD SANTA CLARA, CA 95050
44655	OHMITE	OHMITE MFG. CO. 3601 W. HOWARD ST. SHOKIE, IL 60076
51642	CENTRE	CENTRE ENGINEERING INC. 2820 E. COLLEGE AVE STATE COLLEGE, PA 16801
52763	STETTNER-TRUSH	STETTNER-TRUSH INC. 67 ALBANY ST. CASENOVIA, NY 13035
54453	SULLINS	SULLINS ELECTRONIC CORP. P.O. BOX 757 541B TWIN OAKS VALLEY RD SAN MARCOS, CA 92069
55112	PLESSEY	PLESSEY CAP. DIV. OF PLESSEY INC. 5334 STERLING CENTER DR WESTLAKE VILLAGE, CA 91361
55210	GETTIG	GETTIG ENGINEERING \& MFG. CO. INC. P.0. BOX 85 OFF RT. 45 SPRING MILLS, PA

Table 5-4. Code List of Manufacturers

The following code numbers are extracted from the Federal Supply Code for Manufacturers Cataloging Handbooks $\mathrm{H} 4-1$, and $\mathrm{H} 4-2$, and their supplements		
$\begin{gathered} \text { CODE } \\ \text { NO. } \end{gathered}$	MANUFACTURER	ADDRESS
55285	BERGQUIST	BERGQUISTCO. 4350 WEST 78th ST MINN, MINN 55435
56289	SPRAGUE	SPRAGUE ELECTRIC CO. NORTH ADAMS, MA 01247
71400	BUSS	BUSS MFG. DIV. OF McGRAW-EDISON 2536 W. UNIVERSITY ST. ST. LOUIS, MO 63106
71450	CTS	CTS CORP. 1142 W. BEARDSLEY AVE ELKHART, IN 46514
72619	DIALIGHT	dialight div. Amperex eletronic corp. 203 HARRISON PL. BROOKLYN, NY 11237
72982	ERIE TECH. PROD. INC	ERIE TECHNOLOGY PRODUCTS INC. 644 W. 12th ST LOGANSPORT, IN 46947
73138	BECKMAN	BECKMAN INSTRUMENTS INC. HELIPOT DIV. 2500 HARBOR BLVD. FULLERTON, CA 92634
74970	E.F. JOHNSON	$\begin{aligned} & \text { JOHNSON E.F. CO. } \\ & \text { 299 10th AVE } \\ & \text { S.W. WASECA, MN } 56093 \end{aligned}$

Table 5-4. Code List of Manufacturers

The following code numbers are extracted from the Federal Supply Code for Manufacturers Cataloging Handbooks $\mathrm{H} 4-1$, and $\mathrm{H} 4-2$, and their supplements.		
CODE	MANUFACTURER	ADDRESS
75042	IRC	TRW ELECTRONIC COMPONENTS IRC FIXED RESISTOR PHILADELPHIA DIV. 401 N. BROAD ST. PHILADELPHIA, PA 19108
75915	LITTELFUSE	LItTELFUSE 800 E. NORTHWEST DES PLAINS, ILL 60076
77630	TRW	TRW ELECTRONIC COMPONENTS TRW ELECTRONIC FUNCTIONS DAVIS AND COPEWEED ST. CAMDEN, NJ 08103
78553	TINNERMAN	EATON CORP. P.0. BOX 6688 CLEVELAND, OHIO
80089	STANCOR	STANCOR ESSEA INTERNATIONAL INC. 3501 W. ADDISON CHICAGO, ILL 60618
81349	MIL STANDARDS	MILITARY SPECIFICATIONS PROMULGATED BY MILITARY DEPARTMENTS/AGENCIES UNDER AUTHORITY OF DEFENSE STANDARDIZATION MANUAL 4120 3-M.
83701	EDI	ELECTRONIC DEVICES INC. 21 GRAY OAKS AVE YONKERS, NY 10710
88245	LITTON	LITTON SYSTEMS INC. USECO DIV. 13536 SATICAY ST. VAN NUYS, CA 91409

Table 5-4. Code List of Manufacturers

SECTION VII - CIRCUIT DIAGRAMS

7-1. DIAGRAMS

Reference information for troubleshooting and repair of the direction finder is in the diagrams that follow these paragraphs. The information consists of a cabling diagram, wiring diagrams, parts location diagrams, integrated circuit diagrams, and schematic diagrams.
7.1.1 Cable Assy. Diagram.- Figure 7-1 is a Cable Assy. diagram for the AN/SRD-22. Refer to Section II of this manual for cabling details, including connectors and cables used, maximum allowable length of cables, wire color codes and connector pin assignments.
7.1.2 Wiring Diagrams.- Wiring information for the receiver unit is provided in figure 7-2. There is no internal wiring in the antenna unit.
7.1.3 Parts Location Diagrams. - Figures 7-3 through 7-11 are parts location diagrams for the printed-circuit (PC) boards contained in the receiver unit. Each diagram shows the location and appearance of the electrical parts on the PC board. The parts are identified by the reference designations used on the corresponding schematic diagrams and in the receiver unit spare parts list (Table 5-1).
7.1.4 Integrated Circuit Diagrams. - Figure 7-12 provides details of the integrated circuits (IC's) used in the receiver unit. Information provided includes logic diagrams, truth tables, and connection diagrams.
7.1.5 Schematic Diagrams. - Figures 7-13 through 7-19 provide schematics for the PC boards contained in the receiver unit. Figures 7-20 and 7-21 are schematic diagrams for the antenna unit.

RECEIVER: $\quad 10.5 \mathrm{lbs} ., 4.25^{\prime \prime} \mathrm{H}, 12^{\prime \prime} \mathrm{W}, 15.5^{\prime \prime} \mathrm{L}$. ALLOW $3^{\prime \prime}$ FOR CONNECTIONS OF REAR.
ANTENNA: 7.75LBS., $24.25^{\prime \prime} \mathrm{H}, 48^{\prime \prime}$ WITH GROUNDPLANE DIPOLES.

CABLES: SUPPLIED WITH 125 FEET OF RG58C/U COAXIAL CABLE AND 20 FEET OF 3-WIRE POWER CABLE.

NOTE:
EXCEPT FOR THE VESSEL END OF THE POWER CABLE, ALL CONNECTORS ARE PROVIDED. TO FACILITATE CABLE ROUTING NOT ALL OF THE CONNECTORS ARE INSTALLED. FOR INSTALLATION OF THE RG58C/U CONNECTORS, USE AMP CRIMP TOOL \# 69478-3 OR EQUIVALENT.

1. ANTENNA
2. ANTENNA MOUNT MUST BE FIRMLY FASTENED TO 2 1/2" O.D. PIPE
3. I $1 / 2^{\prime \prime}$ O.D. PIPE
4. RG-58C/ COAX CABLE
5. 3-WIRE POWER CABLE
 STRUCTUREI.

Figure 7-1. Direction Finder Cable Assembly Drawing

Figure 7-3. Power Supply 1A2 Component Location Diagram

Figure 7-6. Audio 1A5 Component Location Diagram

Figure 7-10. Antenna RF Phasing 2A1 Component Location Diagram

(

Figure 7-11. Antenna Driver 2A2 Component Location Diagram

TBA800A
GENERAL DESCRIPTION - The TBA800 is a monolithic Audio Power Amplifier constructed using the Fairchild Planar* Epitaxial process. The external cooling tabs enable 2.5 W output power to be achieved without external heat sink and 5 W output power using a small area of the pc board copper as a heat sink.

It is ideally suited as an audio amplifier in solid state television receivers and other Class B audio amplifier applications over a wide range of supply voltage (5-30 V).

> CONNECTION DIAGRAM 12-PIN POWER PACKAGE
> (TOP VIEW)
> PACKAGE OUTLINE 9W
> PACKAGE CODE P3. P4

EQUIVALENT CIRCUIT

Figure 7-12 Integrated Circuit Elements

T
HE TYPE ULN-2136 F-M Detector and Limiter combines a limiting amplifier, a quadrature discriminator, and a voltage regulator in a single monolithic integrated circuit. Although primarily for $\mathrm{f}-\mathrm{m}$ receivers, the device can be used in any $\mathrm{f}-\mathrm{m}$ demodulator application.

The Type ULN-2136 features improved temperature coefficient of the detector output for better AFC stability and elimination of the detector unbalance inherent to previous designs. Detector unbalance degrades temperature coefficient of the detector output, off-station noise, AMR, and creates tuning and stability problems in a high gain i-f strip.

SCHEMATIC

Figure 7-12 Integrated Circuit Elements

RCA.CA3130T, CA3130S, CA3130AT, CA3130AS, CA. 31308T, and CA31308S are integrated-circuit operational amplifiers that combine the adventages of both $\operatorname{COS} / \mathrm{MOS}$ and bipolar transistors on a monolithic chip.
Gate.protected o.channel MOS/FET (PMOS) transistors are used in the input circuit to provide very high input impedance, ven Iow-input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 volt below the negative-supply terminal, on important attribute in singlesupply applications.
A complementary-symmetry MOS (COS/MOS) transistor pair. capable of swinging the output voltage to within millivolts of either supply-voltage terminal lat very high values of load impedancel, is employed as the output circuit.

The CA3130 Series circuits operate at supply voltages ranging from 5 to 16 volts, or ± 2.5 to ± 8 volts when using split supplies. They can be phase compensated with a single external capacitor. and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage. The CA3130 Series is supplied in either the standard 8 -lead TO-5-style package (T suffix) or in the 8 -lead dual in tine formedtead TO.5-style package "DIL.CAN" (S suffix) and operates over the full military-temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The CA3130B is intended for applications requiring premium-grade specifications and with limits established for: input current, temperature coe:ficient of input-offset voltage. and gain over the range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. The CA3130A offers superior input characteristics over those of the CA3130.

mote
Drooss on through de provide gate-oxide protection
for mos/fey infut stace

Figure 7-12 Integrated Circuit Elements

LF256H

GENERAL DESCRIPTION

These are the first monolithic JFET input operational ampliliers to incorporate well matched, high voltage JFETs on the same chip with standard bipolar transistors. These amplifiers feature low input bias and offset currents, low offset voltage and offset voltage drift, coupled with offset adjust which does not degrade drift or common-mode rejection. The devices are also designed for high slew rate, wide bandwidth, extremely fast settling tirne, low voltage and current noise and a low $1 / \mathrm{f}$ noise corner.

CONNECTION DIAGRAM
 Top Views

Metal Can

DETAILED SCHEMATIC

Figure 7-12 Integrated Circuit Elements

LM201AH

FUNCTIONAL DESCRIPTION

The Am101A/Am201A/Am301A are differential input, class AB output operational amplifiers. The inputs and outputs are protected against overload and the amplifiers may be frequency compensaled with an external 30 pF capacitor. The combination of low-input currents, low-offset voltage, low noise, and versatility of compensation classify the Am101A/Am201A/ Am301A amplifiers for low level and general purpose applications.

NOTES:

(1) On Matal Can. pin 4 is connected to case

FUNCTIONAL DIAGRAM

LM1900

general description

The LM1900 series consists of four independent. dual input, internally compensated amplifiers which were designed specifically to operate off of a single power supply voltage and to provide a large output voltage swing. These amplifiers make use of a current mirror to achieve the non-inverting input function. Application areas include: ac amplifiers, RC active filters, low frequency triangle, squarewave and pulse waveform generation circuits, tachometers and low speed, high voltage digital logic gates.

schematic

Dual-In-Line and Fint Package

Figure 7-12 Integrated Circuit Elements

LM1558/LMI458 DUAL OPERATIONAL AMPLIFIER general description

The LM1558 and the LM 1458 are general purpose dual operational amplifiers. The two amplifiers share a common bias network and power supply leads. Otherwise, their operation is completely independent. Features include

- No frequency compensation required
- Short-circuit protection
- Wide common-mode and differential voltage ranges

connection diagrams

schematic

MC7815CP

MC7800C SERIES THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

The MC7800C Series of threeterminal positive voltage regulators are monolithic integrated circuits designed as fixed voltage regulators for a wide variety of applications including local, on-card regulation. Available in seven fixed output voltage options from 5.0to 24 volts, these regulators employ internal current limiting, thermal shutdown, and safe area compensation - making them essentially blow-out proof. With adequate heatsinking they can deliver output currents in excess of 1.0 ampere. The last two digits of the part number indicate nominal output voltage

- Outpuit Current in Excess of 1.0 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuir Current Limiting
- Output Transistor Safe-Area Compensation
- Packaged in the Plastic Case 199.04
(Pin Compatible with the VERSAWATT ${ }^{\dagger}$ or ${ }^{\text {TO }} 220$)
Or Hermetic TO-3 Type Metal Power Package (Case 11)

Figure 7-12 Integrated Circuit Elements

MC14001

The MC14001 quad 2.Input NOR gate is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These complementary MOS logic gates find primary use where low power dissipation and/or high noise immunity is desired.

- Quiescent Current $=0.5 \mathrm{nA}$ typ/pkg @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical

L SUFFIX
CERAMIC PACKAGE
CASE 632

- Diode Protection on All Inpurs
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Single Supply Operation - Positive or Negative
- High Fanout >50
- Input Impedance $=10^{12}$ ohms typical
- Logic Swing Independent of Fanout
- Pin for Pin Replacement for CD4001A

CIRCUIT SCHEMATIC

Figure 7-12 Integrated Circuit Elements

MC14013BCL

The MC14013B dual type D flip.flop is constructed with MOS P.channel and N -channel enhancement mode devices in a single monolithic structure. Each flip.flop has independent Data, (D), Direct Set, (S), Direct Reset, (R), and Clock (C) inputs and complementary outputs (O and Q). These devices may be used as shift register elements or as type T flip-flops for counter and toggle applications.

- Static Operation
- Quiescent Current = 2.0 nA/package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of VDD typical
- Diode Protection on All Inputs
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Single Supply Operation
- Toggle Rate $=4 \mathrm{MH}_{z}$ typical @ 5 Vdc
- Logic Edge.Clocked Flip.Flop Design

Logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positiveyoing edge of the clock puise

- Capable of.Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temper ature Range
- Pin for-Pin Replacement for CD4013

MC14027BCL

The MC 14027B dual J.K flip.flop has independent J, K. Clock (C). Set (S) and Reset (R) inputs for each flip.flop. These devices may be used in control, register, or toggle functions.

- Quiescent Current = $2.0 \mathrm{nA} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- Diode Protection on All Inputs
- Supply Voltage Range $=3.0 \mathrm{~V}$ do to 18 Vdc
- Single Supply Operation - Positive or Negative
- Togyle Rate $=3.0 \mathrm{MHz}$ typical @ 5 Vdc
- Logic Swing Independent of Fanout
- Logic Edye-Clocked Flip-Flop Design -

Logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positivegoing edge of the clock pulse

- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temper. ature Range
- Pin-for Pin Replacement for CD4027

INPUTS						OUTPUTS*	
C^{+}	J	K	S	R	$\mathrm{O}_{\mathrm{n}}{ }^{\text {+ }}$	Q_{n+1}	$\overline{a_{n+1}}$
-	1	\times	0	0	0	1	0
-	\times	0	0	0	1	1	0
-	0	\times	0	0	0	0	1
-	x	1	0	0	1	0	1
$\underline{\square}$	x	\times	0	0	x	a_{n}	$\overline{\mathrm{O}_{n}}$
x	x	\times	1	0	x	1	0
\times	\times	x	0	1	x	0	1
\times	x	\times	1	1	\times	1	1

x - Don't Care
t - Level Change
$\ddagger=$ Present State

- NextState

L. SUFFIX

CERAMIC PACKAGE
CASE 632
block diagrám

TRUTH TABLE

INPUTS				OUTPUTS	
CLOCK ${ }^{\text { }}$	DATA	RESET	SET	0	б
-	0	0	0	0	1
\square	1	0	0	1	0
$\underline{1}$	x	0	0	0	0
x	x	1	0	0	1
x	x	0	1	1	0
\times	\times	1	1	1	1

L SUFFIX
CERAMIC PACKAGE

BLOCK DIAGRAM

Figure 7-12 Integrated Circuit Elements

The MC14020B 14-stage binary counter is constructed with MOS P-channel and N -channel enhancement mode devices in a single monolithic structure. This part is designed with an input wave shaping circuit and 14 stages of ripple-carry binary counter. The device advances the count on the negative-going edge of the clock pulse. Applications include time delay circuits, counter controls, and fre-quency-dividing circuits.

- Fully Static Operation

- Quiescent Current $=5.0 \mathrm{nA}$ /packàge typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- Diode Protection on All Inputs
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temperature Range
- Low Input Capacitance $=5.0 \mathrm{pF}$ typical
- Buffered Outputs Available from stages 1 and 4 thru 14
- Common Reset Line
- 13 MHz Typical Counting Rate @ VDO $=15 \mathrm{~V}$
- Pin-for-Pin Replacement for CD4020

(2x)

L SUFFIX

GE

都
MC14066BCL

The MC14066 consists of four independent switches capable of controlling either digital or analog signals. This quad bilateral switch is usefut in signal gating, chopper, modulator, demodulator and CMOS logic implementation

The MC14066 is designed to be pin-for-pin compatible with the MC14016, but has much lower ON resistance. Input voltage swings as large as the full supply voltage can be controlled via each independent control input.

LSUFFIX
Ceramic package
CASE 632

- High On/Off Output Voitage Ratio - 65 dB typical
- Quiescent Current $=0.5 \mathrm{nA} /$ package typical @ 5 Vdc
- Low Crosstalk Between Switches -50 dB typical @ 8 MHz
- Diade Protection on Alt Inputs
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Transmits Frequencies Up to 65 MHz @ 10 Vdc
- Linearized Transfer Characteristics, \triangle RON $<60 \Omega$ for $V_{\text {in }}=V_{D D}$ to $V_{S S}$ (at 15 V)
- Low Noise - $12 \mathrm{nV} / \sqrt{\text { Cycle, }} \mathrm{f} \geqslant 1 \mathrm{kHz}$ typical
- Pin-for-Pin Replacement for CD4016, CD4066, MC14016

LOGIC DIAGRAM AND TRUTH TABLE
(1/4 OF DEVICE SHOWN)

Control	Switch	Logic Diagram Restricyoons
0	OFF	$v_{s s} \leq v_{\text {in }} \leq \nu_{00}$
1	ON	$v_{\text {SS }} \leq v_{\text {Out }} \leq V_{\text {DO }}$

$V_{\text {control }}$	$V_{\text {in }}$ to $V_{\text {out }}$ Ressistance
$V_{\text {SS }}$	$>10^{9}$ onms tyo
$V_{\text {DD }}$	3×10^{2} Onms typ

Figure 7-12 Integrated Circuit Elements

MC14518BCL

The MC14518B dual BCD counter and the MC14520B dual binary counter are constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. Each consists of two identical, independent, internally synchronous 4. stage counters. The counter stages are type D flip-flops, with interchangeable Clock and Enable lines for incrementing on either the positive-going or negative-going transition as required when cascading multiple stages. Each counter can be cleared by applying a high level on the Reset line. In addition, the MC 14518 B will count out of all undefined states within two clock periods. These complementary MOS up counters find primary use in multi-stage synchronous or ripple counting applications requiring low power dissipation and/or high noise immunity. Additional characteristics can be found on the Family Data Sheet.

- Quiescent Current $=5.0 \mathrm{nA} /$ package typical @ 5 Vdc
- Noise Immunity $=45 \%$ of $V_{D D}$ typical
- Diode Protection on All Inputs
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Low Input Capacitance $=5.0 \mathrm{pF}$ typical
- Internally Synchronous for High Internal and External Speeds
- Logic Edge-Clock ed Design -- Incremented on Positive Transition of Clock or Negative Transition on Enable
- 6.0 MHz Counting Rate
- Capable of Driving Two Low-power TTL Loads, One Low-power Schottky TTL Load or Two HTL Loads Over the Rated Temper. ature Range

L SUFFIX CERAMIC PACKAGE cáse 620
block diagram

TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
Γ	1	0	Ineroment Counter
0	-	0	Incrament Counter
-	x	0	No Change
x	-	0	No Change
-	0	0	No Change
1	-	0	No Change
x	x	1	01 thru $04-0$

= Don' Care

Figure 7-12 Integrated Circuit Elements

MC14069BCL

The MC140698 hex inverter is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These inverters find primary use where low power dissipation and/or high noise immunity is desired. Each of the six inverters is a single stage to minimize propagation delays.

- Quiescent Current $=0.5$ nA typ/pkg (e) 5 Vdc
- Noise Immunity $=\mathbf{4 5 \%}$ of VDD typ
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low.Power TTL Loads, One Low.Power Schöttky TTL Load or Two HTL Loads Over the Rated Temperature Range
- Double Diode Protection on All Inputs
- Pin-for-Pin Replacement for CD4069B

- Double diode protection on all inpute not shown. -

LOGIC DIAGRAM

SCL4046B

DESCRIPTION

The SCL4046B and SCL4446B phase-locked loops contain two phase comparators, a voltagecontrolled oscillator (VCO), source follower, and zener diode. The comparators have two common inputs. The Signal input can be used directly coupled to large voltage signals, or indirectly coupled (with a series capacitor) to small voltage signals. The self-bias circuit adjusts small voltage signals in the linear region of the amplifier. Phase comparator I (an exclusive. OR gatel provides a digital error signal $P C I_{\text {out }}$, and maintains 90° phase shift at the center frequency between Signal and Comparator inputs (both at 50% duty cycle). Phase comparator II (with leading edge sensing logic) provides digital error signals PCIㅡㅇ and Phase Pulses, and maintains a 0° phase shift between input signals (duty cycle is immaterial). The linear VCO produces an output signal $V \mathrm{VO}_{\text {out }}$ whose frequency is determined by the voltage of input $\mathrm{VCO}_{\text {in }}$ and the capacitor and resistors connected to pins $C 1_{A}$. $C 1_{B}$. R1, and R2. The source follower output, Demod Out, with an external resistor is used where the $\mathrm{VCO}_{\text {in }}$ signal is needed but no loading can be tolerated. The inhibit input Inh, when high, disables the VCO and source follower to minimize standby power consumption. The zener diode can be used to assist in power supply regulation.

BLOCK DIAGRAM

CONNECTION DIAGRAM
(all packages)

Add suffix for package:
C 16-pin Cerdip
D 16-pin Ceramic
E 16-pin Epoxy
F 16-pin Flat
H Chip

Figure 7-12 Integrated Circuit Elements

MC14511B BCD

The MC14511B BCD-to-seven segment latch/decoder/driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4 -bit storage latch; an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (LT), blanking ($\overline{\mathbf{B I}}$), and latch enable (LE) inputs are used to test the display, to turn off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cock pit display driver, and various clock, watch, and timer uses.

- Quiescent Current $=5.0$ nA/package typical @ 5 Vdc
- Low Logic Circuit Power Dissipation
- High-Current Sourcing Outputs (Up to 25 mA)
- Latch Storage of Code
- Blanking Input
- Lamp Test Provision
- Readout Blanking on all Illegal Input Combinations
- Lamp Intensity Modulation Capability
- Time Share (Multiplexing) Facility
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-power TTL Loads, One Low-power Schotiky TTL Load or Two HTL Loads Over the Rated Temperature Range

LOGIC DIAGRAM

Figure 7-12 Integrated Circuit Elements

T
HESE high-voltage, high-current Darlington transistor arrays are comprised of seven silicon NP N Darlington pairs on a common monolithic substrate.

- All units feature open collector outputs and integral suppression diodes for inductive loads. Peak inrush currents to 600 mA are allowable, making them ideal for driving tungsten filament lamps also.

The Type ULN-2004A has an appropriate serics input resistor to allow its operation directly from CMOS or PMOS outputs utilizing supply voltages of 6 to 15 V . The required input current is below that of the Type ULN-2003A while the required input voltage is less than that required by the I ype ULN. 2002A.

pug mo a-9b9an
TYPE ULN-2004A (each driver)

